Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import yt_dlp
|
|
@@ -5,11 +7,10 @@ import os
|
|
| 5 |
from semantic_chunkers import StatisticalChunker
|
| 6 |
from semantic_router.encoders import HuggingFaceEncoder
|
| 7 |
from faster_whisper import WhisperModel
|
| 8 |
-
import
|
| 9 |
-
|
| 10 |
|
| 11 |
-
# Function to download YouTube audio
|
| 12 |
-
def download_youtube_audio(url,
|
| 13 |
ydl_opts = {
|
| 14 |
'format': 'bestaudio/best',
|
| 15 |
'postprocessors': [{
|
|
@@ -17,7 +18,7 @@ def download_youtube_audio(url, output_path, preferred_quality="192"):
|
|
| 17 |
'preferredcodec': 'mp3',
|
| 18 |
'preferredquality': preferred_quality,
|
| 19 |
}],
|
| 20 |
-
'outtmpl':
|
| 21 |
}
|
| 22 |
|
| 23 |
try:
|
|
@@ -26,25 +27,29 @@ def download_youtube_audio(url, output_path, preferred_quality="192"):
|
|
| 26 |
video_title = info_dict.get('title', None)
|
| 27 |
print(f"Downloading audio for: {video_title}")
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
| 33 |
|
| 34 |
except yt_dlp.utils.DownloadError as e:
|
| 35 |
print(f"Error downloading audio: {e}")
|
| 36 |
return None
|
| 37 |
|
| 38 |
-
# Function to transcribe audio using WhisperModel
|
| 39 |
-
@spaces.GPU
|
| 40 |
-
def transcribe(
|
| 41 |
model = WhisperModel(model_name)
|
| 42 |
-
print(
|
| 43 |
-
|
|
|
|
|
|
|
| 44 |
return segments
|
| 45 |
|
| 46 |
# Function to process segments and convert them into a DataFrame
|
| 47 |
-
@spaces.GPU
|
| 48 |
def process_segments(segments):
|
| 49 |
result = {}
|
| 50 |
print("Processing...")
|
|
@@ -62,11 +67,13 @@ def process_segments(segments):
|
|
| 62 |
return df
|
| 63 |
|
| 64 |
# Gradio interface functions
|
| 65 |
-
@spaces.GPU
|
| 66 |
def generate_transcript(youtube_url, model_name="large-v3"):
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
| 70 |
df = process_segments(segments)
|
| 71 |
|
| 72 |
lis = list(df['text'])
|
|
@@ -99,25 +106,20 @@ def generate_transcript(youtube_url, model_name="large-v3"):
|
|
| 99 |
|
| 100 |
# Function to download video using yt-dlp and generate transcript HTML
|
| 101 |
def download_video(youtube_url):
|
| 102 |
-
# Define download options
|
| 103 |
ydl_opts = {
|
| 104 |
'format': 'mp4',
|
| 105 |
'outtmpl': 'downloaded_video.mp4',
|
| 106 |
'quiet': True
|
| 107 |
}
|
| 108 |
|
| 109 |
-
# Extract video ID to check if already downloaded
|
| 110 |
with yt_dlp.YoutubeDL({'quiet': True}) as ydl:
|
| 111 |
info_dict = ydl.extract_info(youtube_url, download=False)
|
| 112 |
video_path = 'downloaded_video.mp4'
|
| 113 |
|
| 114 |
-
# Check if video already downloaded
|
| 115 |
if not os.path.exists(video_path):
|
| 116 |
-
# Download the video
|
| 117 |
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 118 |
ydl.download([youtube_url])
|
| 119 |
|
| 120 |
-
# Generate HTML for the transcript
|
| 121 |
transcripts = generate_transcript(youtube_url)
|
| 122 |
transcript_html = ""
|
| 123 |
for t in transcripts:
|
|
|
|
| 1 |
+
|
| 2 |
+
import spaces
|
| 3 |
import gradio as gr
|
| 4 |
import pandas as pd
|
| 5 |
import yt_dlp
|
|
|
|
| 7 |
from semantic_chunkers import StatisticalChunker
|
| 8 |
from semantic_router.encoders import HuggingFaceEncoder
|
| 9 |
from faster_whisper import WhisperModel
|
| 10 |
+
import io
|
|
|
|
| 11 |
|
| 12 |
+
# Function to download YouTube audio and return it as a BytesIO object
|
| 13 |
+
def download_youtube_audio(url, preferred_quality="192"):
|
| 14 |
ydl_opts = {
|
| 15 |
'format': 'bestaudio/best',
|
| 16 |
'postprocessors': [{
|
|
|
|
| 18 |
'preferredcodec': 'mp3',
|
| 19 |
'preferredquality': preferred_quality,
|
| 20 |
}],
|
| 21 |
+
'outtmpl': '-', # Output to stdout
|
| 22 |
}
|
| 23 |
|
| 24 |
try:
|
|
|
|
| 27 |
video_title = info_dict.get('title', None)
|
| 28 |
print(f"Downloading audio for: {video_title}")
|
| 29 |
|
| 30 |
+
# Download audio to a BytesIO object
|
| 31 |
+
audio_buffer = io.BytesIO()
|
| 32 |
+
ydl.download([url], audio_buffer)
|
| 33 |
+
audio_buffer.seek(0)
|
| 34 |
+
print("Audio download complete")
|
| 35 |
+
return audio_buffer
|
| 36 |
|
| 37 |
except yt_dlp.utils.DownloadError as e:
|
| 38 |
print(f"Error downloading audio: {e}")
|
| 39 |
return None
|
| 40 |
|
| 41 |
+
# Function to transcribe audio from BytesIO using WhisperModel
|
| 42 |
+
@spaces.GPU
|
| 43 |
+
def transcribe(audio_buffer, model_name="medium"):
|
| 44 |
model = WhisperModel(model_name)
|
| 45 |
+
print("Reading audio buffer")
|
| 46 |
+
|
| 47 |
+
# Hypothetical support for BytesIO object
|
| 48 |
+
segments, info = model.transcribe(audio_buffer)
|
| 49 |
return segments
|
| 50 |
|
| 51 |
# Function to process segments and convert them into a DataFrame
|
| 52 |
+
@spaces.GPU
|
| 53 |
def process_segments(segments):
|
| 54 |
result = {}
|
| 55 |
print("Processing...")
|
|
|
|
| 67 |
return df
|
| 68 |
|
| 69 |
# Gradio interface functions
|
| 70 |
+
@spaces.GPU
|
| 71 |
def generate_transcript(youtube_url, model_name="large-v3"):
|
| 72 |
+
audio_buffer = download_youtube_audio(youtube_url)
|
| 73 |
+
if audio_buffer is None:
|
| 74 |
+
return "Error downloading audio"
|
| 75 |
+
|
| 76 |
+
segments = transcribe(audio_buffer, model_name)
|
| 77 |
df = process_segments(segments)
|
| 78 |
|
| 79 |
lis = list(df['text'])
|
|
|
|
| 106 |
|
| 107 |
# Function to download video using yt-dlp and generate transcript HTML
|
| 108 |
def download_video(youtube_url):
|
|
|
|
| 109 |
ydl_opts = {
|
| 110 |
'format': 'mp4',
|
| 111 |
'outtmpl': 'downloaded_video.mp4',
|
| 112 |
'quiet': True
|
| 113 |
}
|
| 114 |
|
|
|
|
| 115 |
with yt_dlp.YoutubeDL({'quiet': True}) as ydl:
|
| 116 |
info_dict = ydl.extract_info(youtube_url, download=False)
|
| 117 |
video_path = 'downloaded_video.mp4'
|
| 118 |
|
|
|
|
| 119 |
if not os.path.exists(video_path):
|
|
|
|
| 120 |
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 121 |
ydl.download([youtube_url])
|
| 122 |
|
|
|
|
| 123 |
transcripts = generate_transcript(youtube_url)
|
| 124 |
transcript_html = ""
|
| 125 |
for t in transcripts:
|