Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,70 +1,41 @@
|
|
| 1 |
import transformers
|
| 2 |
-
|
| 3 |
import gradio as gr
|
|
|
|
| 4 |
import torch
|
| 5 |
-
import numpy as np
|
| 6 |
-
from typing import Dict, List
|
| 7 |
import spaces
|
| 8 |
|
| 9 |
-
# Constants
|
| 10 |
-
MODEL_NAME = 'sarvamai/shuka_v1'
|
| 11 |
-
SAMPLE_RATE = 16000
|
| 12 |
-
MAX_NEW_TOKENS = 256
|
| 13 |
-
|
| 14 |
-
# Load the ShukaPipeline
|
| 15 |
-
def load_pipeline():
|
| 16 |
-
model = transformers.AutoModel.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 17 |
-
pipeline = transformers.pipeline(
|
| 18 |
-
"shuka-pipeline",
|
| 19 |
-
model=model,
|
| 20 |
-
torch_dtype=torch.float16,
|
| 21 |
-
device=0 if torch.cuda.is_available() else -1,
|
| 22 |
-
)
|
| 23 |
-
return pipeline
|
| 24 |
-
|
| 25 |
-
pipe = load_pipeline()
|
| 26 |
-
|
| 27 |
-
def create_conversation_turns(prompt: str) -> List[Dict[str, str]]:
|
| 28 |
-
return [
|
| 29 |
-
{'role': 'system', 'content': 'Respond naturally and informatively.'},
|
| 30 |
-
{'role': 'user', 'content': prompt}
|
| 31 |
-
]
|
| 32 |
-
|
| 33 |
@spaces.GPU(duration=120)
|
| 34 |
-
def transcribe_and_respond(
|
| 35 |
try:
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
|
|
|
| 40 |
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
-
# Create input for the pipeline
|
| 44 |
-
turns = create_conversation_turns("<|audio|>")
|
| 45 |
-
inputs = {
|
| 46 |
-
'audio': audio,
|
| 47 |
-
'turns': turns,
|
| 48 |
-
'sampling_rate': SAMPLE_RATE
|
| 49 |
-
}
|
| 50 |
-
|
| 51 |
-
# Generate response
|
| 52 |
-
response = pipe(inputs, max_new_tokens=MAX_NEW_TOKENS, temperature=0.7, repetition_penalty=1.1)
|
| 53 |
-
|
| 54 |
-
return response
|
| 55 |
except Exception as e:
|
| 56 |
-
return f"Error
|
| 57 |
|
| 58 |
-
# Create the Gradio interface
|
| 59 |
iface = gr.Interface(
|
| 60 |
fn=transcribe_and_respond,
|
| 61 |
-
inputs=gr.Audio(sources="microphone", type="
|
| 62 |
-
outputs="text",
|
| 63 |
-
title="Live
|
| 64 |
description="Speak into your microphone, and the model will respond naturally and informatively.",
|
| 65 |
-
live=True
|
| 66 |
)
|
| 67 |
|
| 68 |
-
# Launch the app
|
| 69 |
if __name__ == "__main__":
|
| 70 |
iface.launch()
|
|
|
|
| 1 |
import transformers
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
+
import librosa
|
| 4 |
import torch
|
|
|
|
|
|
|
| 5 |
import spaces
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
@spaces.GPU(duration=120)
|
| 8 |
+
def transcribe_and_respond(audio_file):
|
| 9 |
try:
|
| 10 |
+
pipe = transformers.pipeline(
|
| 11 |
+
model='sarvamai/shuka_v1',
|
| 12 |
+
trust_remote_code=True,
|
| 13 |
+
device=0,
|
| 14 |
+
torch_dtype=torch.bfloat16
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
audio, sr = librosa.load(audio_file, sr=16000)
|
| 18 |
+
|
| 19 |
+
turns = [
|
| 20 |
+
{'role': 'system', 'content': 'Respond naturally and informatively.'},
|
| 21 |
+
{'role': 'user', 'content': ''}
|
| 22 |
+
]
|
| 23 |
|
| 24 |
+
output = pipe({'audio': audio, 'turns': turns, 'sampling_rate': sr}, max_new_tokens=512)
|
| 25 |
|
| 26 |
+
return output
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
except Exception as e:
|
| 29 |
+
return f"Error: {str(e)}"
|
| 30 |
|
|
|
|
| 31 |
iface = gr.Interface(
|
| 32 |
fn=transcribe_and_respond,
|
| 33 |
+
inputs=gr.Audio(sources="microphone", type="filepath"), # Accept audio input from microphone
|
| 34 |
+
outputs="text", # Output as text
|
| 35 |
+
title="Live Transcription and Response",
|
| 36 |
description="Speak into your microphone, and the model will respond naturally and informatively.",
|
| 37 |
+
live=True # Enable live processing
|
| 38 |
)
|
| 39 |
|
|
|
|
| 40 |
if __name__ == "__main__":
|
| 41 |
iface.launch()
|