Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from huggingface_hub import HfApi
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
DATASETS = [
|
| 7 |
+
"mMARCO-fr",
|
| 8 |
+
"BSARD",
|
| 9 |
+
]
|
| 10 |
+
DENSE_SINGLE_BIENCODERS = [
|
| 11 |
+
"antoinelouis/biencoder-camembert-base-mmarcoFR",
|
| 12 |
+
"antoinelouis/biencoder-distilcamembert-mmarcoFR",
|
| 13 |
+
"antoinelouis/biencoder-mMiniLMv2-L12-mmarcoFR",
|
| 14 |
+
"antoinelouis/biencoder-camemberta-base-mmarcoFR",
|
| 15 |
+
"antoinelouis/biencoder-electra-base-french-mmarcoFR",
|
| 16 |
+
"antoinelouis/biencoder-mMiniLMv2-L6-mmarcoFR",
|
| 17 |
+
"antoinelouis/biencoder-camembert-L10-mmarcoFR",
|
| 18 |
+
"antoinelouis/biencoder-camembert-L8-mmarcoFR",
|
| 19 |
+
"antoinelouis/biencoder-camembert-L6-mmarcoFR",
|
| 20 |
+
"antoinelouis/biencoder-camembert-L4-mmarcoFR",
|
| 21 |
+
"antoinelouis/biencoder-camembert-L2-mmarcoFR",
|
| 22 |
+
]
|
| 23 |
+
DENSE_MULTI_BIENCODERS = [
|
| 24 |
+
"antoinelouis/colbertv1-camembert-base-mmarcoFR",
|
| 25 |
+
"antoinelouis/colbertv2-camembert-L4-mmarcoFR",
|
| 26 |
+
"antoinelouis/colbert-xm",
|
| 27 |
+
]
|
| 28 |
+
SPARSE_SINGLE_BIENCODERS = []
|
| 29 |
+
CROSS_ENCODERS = []
|
| 30 |
+
LLMS = []
|
| 31 |
+
COLUMNS = {
|
| 32 |
+
"Model": "html",
|
| 33 |
+
"#Params (M)": "number",
|
| 34 |
+
"Type": "str",
|
| 35 |
+
"Dataset": "str",
|
| 36 |
+
"Recall@1000": "number",
|
| 37 |
+
"Recall@500": "number",
|
| 38 |
+
"Recall@100": "number",
|
| 39 |
+
"Recall@10": "number",
|
| 40 |
+
"MRR@10": "number",
|
| 41 |
+
"nDCG@10": "number",
|
| 42 |
+
"MAP@10": "number",
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def get_model_info(model_id: str, model_type: str) -> pd.DataFrame:
|
| 47 |
+
data = {}
|
| 48 |
+
api = HfApi()
|
| 49 |
+
model_info = api.model_info(model_id)
|
| 50 |
+
for result in model_info.card_data.eval_results:
|
| 51 |
+
if result.dataset_name in DATASETS and result.dataset_name not in data:
|
| 52 |
+
data[result.dataset_name] = {key: None for key in COLUMNS.keys()}
|
| 53 |
+
data[result.dataset_name]["Model"] = f'<a href="https://huggingface.co/{model_id}" target="_blank" style="color: blue; text-decoration: none;">{model_id}</a>'
|
| 54 |
+
data[result.dataset_name]["#Params (M)"] = round(model_info.safetensors.total/1e6) if model_info.safetensors else None
|
| 55 |
+
data[result.dataset_name]["Type"] = model_type
|
| 56 |
+
data[result.dataset_name]["Dataset"] = result.dataset_name
|
| 57 |
+
|
| 58 |
+
if result.dataset_name in DATASETS and result.metric_name in data[result.dataset_name]:
|
| 59 |
+
data[result.dataset_name][result.metric_name] = result.metric_value
|
| 60 |
+
|
| 61 |
+
return pd.DataFrame(list(data.values()))
|
| 62 |
+
|
| 63 |
+
def load_all_results() -> pd.DataFrame:
|
| 64 |
+
df = pd.DataFrame()
|
| 65 |
+
for model_id in DENSE_SINGLE_BIENCODERS:
|
| 66 |
+
df = pd.concat([df, get_model_info(model_id, model_type="DSVBE")])
|
| 67 |
+
for model_id in DENSE_MULTI_BIENCODERS:
|
| 68 |
+
df = pd.concat([df, get_model_info(model_id, model_type="DMVBE")])
|
| 69 |
+
for model_id in SPARSE_SINGLE_BIENCODERS:
|
| 70 |
+
df = pd.concat([df, get_model_info(model_id, model_type="SSVBE")])
|
| 71 |
+
for model_id in CROSS_ENCODERS:
|
| 72 |
+
df = pd.concat([df, get_model_info(model_id, model_type="CE")])
|
| 73 |
+
for model_id in LLMS:
|
| 74 |
+
df = pd.concat([df, get_model_info(model_id, model_type="LLM")])
|
| 75 |
+
return df
|
| 76 |
+
|
| 77 |
+
def filter_dataf_by_dataset(dataf: pd.DataFrame, dataset_name: str, sort_by: str) -> pd.DataFrame:
|
| 78 |
+
return (dataf
|
| 79 |
+
.loc[dataf["Dataset"] == dataset_name]
|
| 80 |
+
.drop(columns=["Dataset"])
|
| 81 |
+
.sort_values(by=sort_by, ascending=False)
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def update_table(dataf: pd.DataFrame, query: str, selected_types: list, selected_sizes: list) -> pd.DataFrame:
|
| 86 |
+
filtered_df = dataf.copy()
|
| 87 |
+
conditions = []
|
| 88 |
+
|
| 89 |
+
for val in selected_types:
|
| 90 |
+
if val == 'Dense single-vector bi-encoder (DSVBE)':
|
| 91 |
+
conditions.append((filtered_df['Type'] == 'DSVBE'))
|
| 92 |
+
elif val == 'Dense multi-vector bi-encoder (DMVBE)':
|
| 93 |
+
conditions.append((filtered_df['Type'] == 'DMVBE'))
|
| 94 |
+
elif val == 'Sparse single-vector bi-encoder (SSVBE)':
|
| 95 |
+
conditions.append((filtered_df['Type'] == 'SSVBE'))
|
| 96 |
+
elif val == 'Cross-encoder (CE)':
|
| 97 |
+
conditions.append((filtered_df['Type'] == 'CE'))
|
| 98 |
+
elif val == 'LLM':
|
| 99 |
+
conditions.append((filtered_df['Type'] == 'LLM'))
|
| 100 |
+
|
| 101 |
+
for val in selected_sizes:
|
| 102 |
+
if val == 'Small (< 100M)':
|
| 103 |
+
conditions.append((filtered_df['#Params (M)'] < 100))
|
| 104 |
+
elif val == 'Base (100M-300M)':
|
| 105 |
+
conditions.append((filtered_df['#Params (M)'] >= 100) & (filtered_df['#Params (M)'] <= 300))
|
| 106 |
+
elif val == 'Large (300M-500M)':
|
| 107 |
+
conditions.append((filtered_df['#Params (M)'] >= 300) & (filtered_df['#Params (M)'] <= 500))
|
| 108 |
+
elif val == 'Extra-large (500M+)':
|
| 109 |
+
conditions.append((filtered_df['#Params (M)'] > 500))
|
| 110 |
+
|
| 111 |
+
if conditions:
|
| 112 |
+
filtered_df = filtered_df[pd.concat(conditions, axis=1).any(axis=1)]
|
| 113 |
+
|
| 114 |
+
if query:
|
| 115 |
+
filtered_df = filtered_df[filtered_df['Model'].str.contains(query, case=False)]
|
| 116 |
+
|
| 117 |
+
return filtered_df
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
with gr.Blocks() as demo:
|
| 121 |
+
gr.HTML("""
|
| 122 |
+
<div style="display: flex; flex-direction: column; align-items: center;">
|
| 123 |
+
<div style="align-self: flex-start;">
|
| 124 |
+
<a href="mailto:[email protected]" target="_blank" style="color: blue; text-decoration: none;">Contact/Submissions</a>
|
| 125 |
+
</div>
|
| 126 |
+
<h1 style="margin: 0;">🥇 DécouvrIR\n</h1>A Benchmark for Evaluating the Robustness of Information Retrieval Models in French</h1>
|
| 127 |
+
</div>
|
| 128 |
+
""")
|
| 129 |
+
|
| 130 |
+
# Create the Pandas dataframes (one per dataset)
|
| 131 |
+
all_df = load_all_results()
|
| 132 |
+
mmarco_df = filter_dataf_by_dataset(all_df, dataset_name="mMARCO-fr", sort_by="Recall@500")
|
| 133 |
+
bsard_df = filter_dataf_by_dataset(all_df, dataset_name="BSARD", sort_by="Recall@500")
|
| 134 |
+
|
| 135 |
+
# Search and filter widgets
|
| 136 |
+
with gr.Column():
|
| 137 |
+
with gr.Row():
|
| 138 |
+
search_bar = gr.Textbox(placeholder=" 🔍 Search for a model...", show_label=False, elem_id="search-bar")
|
| 139 |
+
|
| 140 |
+
with gr.Row():
|
| 141 |
+
filter_type = gr.CheckboxGroup(
|
| 142 |
+
label="Model type",
|
| 143 |
+
choices=[
|
| 144 |
+
'Dense single-vector bi-encoder (DSVBE)',
|
| 145 |
+
'Dense multi-vector bi-encoder (DMVBE)',
|
| 146 |
+
'Sparse single-vector bi-encoder (SSVBE)',
|
| 147 |
+
'Cross-encoder (CE)',
|
| 148 |
+
'LLM',
|
| 149 |
+
],
|
| 150 |
+
value=[],
|
| 151 |
+
interactive=True,
|
| 152 |
+
elem_id="filter-type",
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
with gr.Row():
|
| 156 |
+
filter_size = gr.CheckboxGroup(
|
| 157 |
+
label="Model size",
|
| 158 |
+
choices=['Small (< 100M)', 'Base (100M-300M)', 'Large (300M-500M)', 'Extra-large (500M+)'],
|
| 159 |
+
value=[],
|
| 160 |
+
interactive=True,
|
| 161 |
+
elem_id="filter-size",
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
# Leaderboard tables
|
| 165 |
+
with gr.Tabs():
|
| 166 |
+
with gr.TabItem("🌐 mMARCO-fr"):
|
| 167 |
+
gr.HTML("""
|
| 168 |
+
<p>The <a href="https://huggingface.co/datasets/unicamp-dl/mmarco" target="_blank" style="color: blue; text-decoration: none;">mMARCO</a> dataset is a machine-translated version of
|
| 169 |
+
the widely popular MS MARCO dataset across 13 languages (including French) for studying <strong> domain-general</strong> passage retrieval.</p>
|
| 170 |
+
<p>The evaluation is performed on <strong>6,980 dev questions</strong> labeled with relevant passages to be retrieved from a corpus of <strong>8,841,823 candidates</strong>.</p>
|
| 171 |
+
""")
|
| 172 |
+
mmarco_table = gr.Dataframe(
|
| 173 |
+
value=mmarco_df,
|
| 174 |
+
datatype=[COLUMNS[col] for col in mmarco_df.columns],
|
| 175 |
+
interactive=False,
|
| 176 |
+
elem_classes="text-sm",
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
with gr.TabItem("⚖️ BSARD"):
|
| 180 |
+
gr.HTML("""
|
| 181 |
+
<p>The <a href="https://huggingface.co/datasets/maastrichtlawtech/bsard" target="_blank" style="color: blue; text-decoration: none;">Belgian Statutory Article Retrieval Dataset (BSARD)</a> is a
|
| 182 |
+
French native dataset for studying <strong>legal</strong> document retrieval.</p>
|
| 183 |
+
<p>The evaluation is performed on <strong>222 test questions</strong> labeled by experienced jurists with relevant Belgian law articles to be retrieved from a corpus of <strong>22,633 candidates</strong>.</p>
|
| 184 |
+
<i>[Coming soon...]</i>
|
| 185 |
+
""")
|
| 186 |
+
# bsard_table = gr.Dataframe(
|
| 187 |
+
# value=bsard_df,
|
| 188 |
+
# datatype=[COLUMNS[col] for col in bsard_df.columns],
|
| 189 |
+
# interactive=False,
|
| 190 |
+
# elem_classes="text-sm",
|
| 191 |
+
# )
|
| 192 |
+
|
| 193 |
+
# Update tables on search.
|
| 194 |
+
search_bar.change(
|
| 195 |
+
fn=lambda x: update_table(dataf=mmarco_df, query=x, selected_types=filter_type.value, selected_sizes=filter_size.value),
|
| 196 |
+
inputs=[search_bar],
|
| 197 |
+
outputs=mmarco_table,
|
| 198 |
+
)
|
| 199 |
+
# search_bar.change(
|
| 200 |
+
# fn=lambda x: update_table(dataf=bsard_df, query=x, selected_types=filter_type.value, selected_sizes=filter_size.value),
|
| 201 |
+
# inputs=[search_bar],
|
| 202 |
+
# outputs=bsard_table,
|
| 203 |
+
# )
|
| 204 |
+
|
| 205 |
+
# Update tables on model type filter.
|
| 206 |
+
filter_type.change(
|
| 207 |
+
fn=lambda selected_types: update_table(mmarco_df, search_bar.value, selected_types, filter_size.value),
|
| 208 |
+
inputs=[filter_type],
|
| 209 |
+
outputs=mmarco_table,
|
| 210 |
+
)
|
| 211 |
+
# filter_type.change(
|
| 212 |
+
# fn=lambda selected_types: update_table(bsard_df, search_bar.value, selected_types, filter_size.value),
|
| 213 |
+
# inputs=[filter_type],
|
| 214 |
+
# outputs=bsard_table,
|
| 215 |
+
# )
|
| 216 |
+
|
| 217 |
+
# Update tables on model size filter.
|
| 218 |
+
filter_size.change(
|
| 219 |
+
fn=lambda selected_sizes: update_table(mmarco_df, search_bar.value, filter_type.value, selected_sizes),
|
| 220 |
+
inputs=[filter_size],
|
| 221 |
+
outputs=mmarco_table,
|
| 222 |
+
)
|
| 223 |
+
# filter_size.change(
|
| 224 |
+
# fn=lambda selected_sizes: update_table(bsard_df, search_bar.value, filter_type.value, selected_sizes),
|
| 225 |
+
# inputs=[filter_size],
|
| 226 |
+
# outputs=bsard_table,
|
| 227 |
+
# )
|
| 228 |
+
|
| 229 |
+
# Citation
|
| 230 |
+
with gr.Column():
|
| 231 |
+
with gr.Row():
|
| 232 |
+
gr.HTML("""
|
| 233 |
+
<h2>Citation</h2>
|
| 234 |
+
<p>For attribution in academic contexts, please cite this benchmark and any of the models released by <a href="https://huggingface.co/antoinelouis" target="_blank" style="color: blue; text-decoration: none;">@antoinelouis</a> as follows:</p>
|
| 235 |
+
""")
|
| 236 |
+
with gr.Row():
|
| 237 |
+
citation_block = (
|
| 238 |
+
"@online{louis2024decouvrir,\n"
|
| 239 |
+
"\tauthor = 'Antoine Louis',\n"
|
| 240 |
+
"\ttitle = 'DécouvrIR: A Benchmark for Evaluating the Robustness of Information Retrieval Models in French',\n"
|
| 241 |
+
"\tpublisher = 'Hugging Face',\n"
|
| 242 |
+
"\tmonth = 'mar',\n"
|
| 243 |
+
"\tyear = '2024',\n"
|
| 244 |
+
"\turl = 'https://huggingface.co/spaces/antoinelouis/decouvrir',\n"
|
| 245 |
+
"}\n"
|
| 246 |
+
)
|
| 247 |
+
gr.Code(citation_block, language=None, show_label=False)
|
| 248 |
+
|
| 249 |
+
demo.launch()
|