Upload 3 files
Browse files- aifunc.py +46 -0
- main.py +34 -0
- sapmle.txt +6 -0
aifunc.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import keyboard
|
| 3 |
+
import time
|
| 4 |
+
import requests
|
| 5 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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"
|
| 6 |
+
#from langchain.vectorstores.weaviate import Weaviate
|
| 7 |
+
from langchain.document_loaders import TextLoader #for textfiles
|
| 8 |
+
from langchain.text_splitter import CharacterTextSplitter #text splitter
|
| 9 |
+
from langchain.embeddings import HuggingFaceEmbeddings #for using HugginFace models
|
| 10 |
+
# Vectorstore: https://python.langchain.com/en/latest/modules/indexes/vectorstores.html
|
| 11 |
+
from langchain.vectorstores import FAISS #facebook vectorizationfrom langchain.chains.question_answering import load_qa_chain
|
| 12 |
+
from langchain.chains.question_answering import load_qa_chain
|
| 13 |
+
from langchain import HuggingFaceHub
|
| 14 |
+
from langchain.document_loaders import UnstructuredPDFLoader #load pdf
|
| 15 |
+
from langchain.indexes import VectorstoreIndexCreator #vectorize db index with chromadb
|
| 16 |
+
from langchain.chains import RetrievalQA
|
| 17 |
+
from langchain.document_loaders import UnstructuredURLLoader #load urls into docoument-loader
|
| 18 |
+
import requests
|
| 19 |
+
import textwrap
|
| 20 |
+
from langchain.document_loaders import TextLoader
|
| 21 |
+
|
| 22 |
+
loader = TextLoader('./KS-all-info_rev1.txt')
|
| 23 |
+
documents = loader.load()
|
| 24 |
+
def wrap_text_preserve_newlines(text, width=110):
|
| 25 |
+
# Split the input text into lines based on newline characters
|
| 26 |
+
lines = text.split('\n')
|
| 27 |
+
# Wrap each line individually
|
| 28 |
+
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
|
| 29 |
+
# Join the wrapped lines back together using newline characters
|
| 30 |
+
wrapped_text = '\n'.join(wrapped_lines)
|
| 31 |
+
return wrapped_text
|
| 32 |
+
text_splitter = CharacterTextSplitter(chunk_size=3000, chunk_overlap=10)
|
| 33 |
+
docs = text_splitter.split_documents(documents)
|
| 34 |
+
# Embeddings
|
| 35 |
+
embeddings = HuggingFaceEmbeddings()
|
| 36 |
+
#Create the vectorized db
|
| 37 |
+
# Vectorstore: https://python.langchain.com/en/latest/modules/indexes/vectorstores.html
|
| 38 |
+
db = FAISS.from_documents(docs, embeddings)
|
| 39 |
+
llm=HuggingFaceHub(repo_id="MBZUAI/LaMini-Flan-T5-783M", model_kwargs={"temperature":0, "max_length":512})
|
| 40 |
+
chain = load_qa_chain(llm, chain_type="stuff")
|
| 41 |
+
def run_chain(query):
|
| 42 |
+
result=chain.run(input_documents=docs, question=query)
|
| 43 |
+
return result
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
#keyboard.unhook_all()###########################
|
main.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from aifunc import run_chain
|
| 3 |
+
|
| 4 |
+
def main():
|
| 5 |
+
st.title("DentalGPT For Everybody")
|
| 6 |
+
|
| 7 |
+
# File upload window
|
| 8 |
+
uploaded_file = st.file_uploader("Upload files to ML")
|
| 9 |
+
|
| 10 |
+
# Text input window
|
| 11 |
+
user_input = st.text_input("Enter text")
|
| 12 |
+
|
| 13 |
+
# Process uploaded file and user input
|
| 14 |
+
result = process_data(uploaded_file, user_input)
|
| 15 |
+
|
| 16 |
+
# Display result in a read-only text field
|
| 17 |
+
st.text_area("Result", value=result, disabled=True)
|
| 18 |
+
|
| 19 |
+
def process_data(file, input_text):
|
| 20 |
+
# Perform data processing here based on the uploaded file and user input
|
| 21 |
+
# Return the processed result as a string
|
| 22 |
+
# Example implementation:
|
| 23 |
+
if file is not None:
|
| 24 |
+
file_contents = file.read()
|
| 25 |
+
# Process file contents
|
| 26 |
+
|
| 27 |
+
# Process user input
|
| 28 |
+
# ...
|
| 29 |
+
|
| 30 |
+
# Return the result
|
| 31 |
+
return "Processed result"
|
| 32 |
+
|
| 33 |
+
if __name__ == '__main__':
|
| 34 |
+
main()
|
sapmle.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
In his follow-up to 'Symbiosis',Sterling takes a look at the subtle, unnoticed presence and influence of AI in our everyday lives.
|
| 2 |
+
It reveals how AI has become woven into our routines, often without our explicit realization.Dr. Cortez takes readers on a journey exploring the controversial topic of AI consciousness.
|
| 3 |
+
The book provides compelling arguments for and against the possibility of true AI sentience.In her second book, Dr. Simmons delves deeper into the ethical considerations surrounding AI development and deployment.
|
| 4 |
+
It is an eye-opening examination of the dilemmas faced by developers, policymakers, and society at large.Sterling explores the potential for harmonious coexistence between humans and artificial intelligence.
|
| 5 |
+
The book discusses how AI can be integrated into society in a beneficial and non-disruptive manner.A comprehensive analysis of the evolution of artificial intelligence, from its inception to its future prospects.
|
| 6 |
+
Dr. Simmons covers ethical considerations, potentials, and threats posed by AI.
|