Reworked app + 2D + 3D viewer
Browse files- Dockerfile +2 -2
- demo/app.py +9 -171
- demo/src/__init__.py +0 -0
- demo/src/compute.py +6 -0
- demo/src/convert.py +24 -0
- demo/src/gui.py +76 -0
- demo/src/utils.py +38 -0
Dockerfile
CHANGED
|
@@ -22,6 +22,8 @@ WORKDIR /code
|
|
| 22 |
RUN apt-get update -y
|
| 23 |
RUN apt install git --fix-missing -y
|
| 24 |
|
|
|
|
|
|
|
| 25 |
# install dependencies
|
| 26 |
COPY ./demo/requirements.txt /code/demo/requirements.txt
|
| 27 |
RUN python3.7 -m pip install --no-cache-dir --upgrade -r /code/demo/requirements.txt
|
|
@@ -32,8 +34,6 @@ RUN python3.7 -m pip install --force-reinstall typing_extensions==4.0.0
|
|
| 32 |
# Install wget
|
| 33 |
RUN apt install wget -y
|
| 34 |
|
| 35 |
-
RUN ls -la
|
| 36 |
-
|
| 37 |
# Set up a new user named "user" with user ID 1000
|
| 38 |
RUN useradd -m -u 1000 user
|
| 39 |
|
|
|
|
| 22 |
RUN apt-get update -y
|
| 23 |
RUN apt install git --fix-missing -y
|
| 24 |
|
| 25 |
+
RUN ls -la
|
| 26 |
+
|
| 27 |
# install dependencies
|
| 28 |
COPY ./demo/requirements.txt /code/demo/requirements.txt
|
| 29 |
RUN python3.7 -m pip install --no-cache-dir --upgrade -r /code/demo/requirements.txt
|
|
|
|
| 34 |
# Install wget
|
| 35 |
RUN apt install wget -y
|
| 36 |
|
|
|
|
|
|
|
| 37 |
# Set up a new user named "user" with user ID 1000
|
| 38 |
RUN useradd -m -u 1000 user
|
| 39 |
|
demo/app.py
CHANGED
|
@@ -1,178 +1,16 @@
|
|
| 1 |
-
|
| 2 |
-
import subprocess as sp
|
| 3 |
-
from skimage.measure import marching_cubes
|
| 4 |
-
import nibabel as nib
|
| 5 |
-
from nibabel.processing import resample_to_output
|
| 6 |
-
import numpy as np
|
| 7 |
-
import random
|
| 8 |
|
| 9 |
|
| 10 |
-
def
|
| 11 |
-
# load NIFTI into numpy array
|
| 12 |
-
image = nib.load(path)
|
| 13 |
-
resampled = resample_to_output(image, [1, 1, 1], order=1)
|
| 14 |
-
data = resampled.get_fdata().astype("uint8")
|
| 15 |
-
|
| 16 |
-
# extract surface
|
| 17 |
-
verts, faces, normals, values = marching_cubes(data, 0)
|
| 18 |
-
faces += 1
|
| 19 |
-
|
| 20 |
-
with open('prediction.obj', 'w') as thefile:
|
| 21 |
-
for item in verts:
|
| 22 |
-
thefile.write("v {0} {1} {2}\n".format(item[0],item[1],item[2]))
|
| 23 |
-
|
| 24 |
-
for item in normals:
|
| 25 |
-
thefile.write("vn {0} {1} {2}\n".format(item[0],item[1],item[2]))
|
| 26 |
-
|
| 27 |
-
for item in faces:
|
| 28 |
-
thefile.write("f {0}//{0} {1}//{1} {2}//{2}\n".format(item[0],item[1],item[2]))
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
def run_model(input_path):
|
| 32 |
-
from livermask.utils.run import run_analysis
|
| 33 |
-
|
| 34 |
-
run_analysis(cpu=True, extension='.nii', path=input_path, output='prediction', verbose=True, vessels=False, name="/home/user/app/model.h5", mp_enabled=False)
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
def load_mesh(mesh_file_name):
|
| 38 |
-
path = mesh_file_name.name
|
| 39 |
-
run_model(path)
|
| 40 |
-
nifti_to_glb("prediction-livermask.nii")
|
| 41 |
-
return "./prediction.obj"
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
def setup_gallery(data_path, pred_path):
|
| 45 |
-
image = nib.load(data_path)
|
| 46 |
-
resampled = resample_to_output(image, [1, 1, 1], order=1)
|
| 47 |
-
data = resampled.get_fdata().astype("uint8")
|
| 48 |
-
|
| 49 |
-
image = nib.load(pred_path)
|
| 50 |
-
resampled = resample_to_output(image, [1, 1, 1], order=0)
|
| 51 |
-
pred = resampled.get_fdata().astype("uint8")
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
def load_ct_to_numpy(data_path):
|
| 55 |
-
if type(data_path) != str:
|
| 56 |
-
data_path = data_path.name
|
| 57 |
-
|
| 58 |
-
image = nib.load(data_path)
|
| 59 |
-
data = image.get_fdata()
|
| 60 |
-
|
| 61 |
-
data = np.rot90(data, k=1, axes=(0, 1))
|
| 62 |
-
|
| 63 |
-
data[data < -150] = -150
|
| 64 |
-
data[data > 250] = 250
|
| 65 |
-
|
| 66 |
-
data = data - np.amin(data)
|
| 67 |
-
data = data / np.amax(data) * 255
|
| 68 |
-
data = data.astype("uint8")
|
| 69 |
-
|
| 70 |
-
print(data.shape)
|
| 71 |
-
return [data[..., i] for i in range(data.shape[-1])]
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
def upload_file(file):
|
| 75 |
-
return file.name
|
| 76 |
-
|
| 77 |
-
#def select_section(evt: gr.SelectData):
|
| 78 |
-
# return section_labels[evt.index]
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
if __name__ == "__main__":
|
| 82 |
print("Launching demo...")
|
| 83 |
-
with gr.Blocks() as demo:
|
| 84 |
-
"""
|
| 85 |
-
with gr.Blocks() as demo:
|
| 86 |
-
with gr.Row():
|
| 87 |
-
text1 = gr.Textbox(label="t1")
|
| 88 |
-
slider2 = gr.Textbox(label="slide")
|
| 89 |
-
drop3 = gr.Dropdown(["a", "b", "c"], label="d3")
|
| 90 |
-
with gr.Row():
|
| 91 |
-
with gr.Column(scale=1, min_width=600):
|
| 92 |
-
text1 = gr.Textbox(label="prompt 1")
|
| 93 |
-
text2 = gr.Textbox(label="prompt 2")
|
| 94 |
-
inbtw = gr.Button("Between")
|
| 95 |
-
text4 = gr.Textbox(label="prompt 1")
|
| 96 |
-
text5 = gr.Textbox(label="prompt 2")
|
| 97 |
-
with gr.Column(scale=2, min_width=600):
|
| 98 |
-
img1 = gr.Image("images/cheetah.jpg")
|
| 99 |
-
btn = gr.Button("Go").style(full_width=True)
|
| 100 |
-
|
| 101 |
-
greeter_1 = gr.Interface(lambda name: f"Hello {name}!", inputs="textbox", outputs=gr.Textbox(label="Greeter 1"))
|
| 102 |
-
greeter_2 = gr.Interface(lambda name: f"Greetings {name}!", inputs="textbox", outputs=gr.Textbox(label="Greeter 2"))
|
| 103 |
-
demo = gr.Parallel(greeter_1, greeter_2)
|
| 104 |
-
|
| 105 |
-
volume_renderer = gr.Interface(
|
| 106 |
-
fn=load_mesh,
|
| 107 |
-
inputs=gr.UploadButton(label="Click to Upload a File", file_types=[".nii", ".nii.nz"], file_count="single"),
|
| 108 |
-
outputs=gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model"),
|
| 109 |
-
title="livermask: Automatic Liver Parenchyma segmentation in CT",
|
| 110 |
-
description="Using pretrained deep learning model trained on the LiTS17 dataset",
|
| 111 |
-
)
|
| 112 |
-
"""
|
| 113 |
-
|
| 114 |
-
with gr.Row():
|
| 115 |
-
# file_output = gr.File()
|
| 116 |
-
upload_button = gr.UploadButton(label="Click to Upload a File", file_types=[".nii", ".nii.nz"], file_count="single")
|
| 117 |
-
# upload_button.upload(upload_file, upload_button, file_output)
|
| 118 |
-
|
| 119 |
-
#select_btn = gr.Button("Run analysis")
|
| 120 |
-
#select_btn.click(fn=upload_file, inputs=upload_button, outputs=output, api_name="Analysis")
|
| 121 |
-
|
| 122 |
-
#upload_button.click(section, [img_input, num_boxes, num_segments], img_output)
|
| 123 |
-
|
| 124 |
-
#print("file output:", file_output)
|
| 125 |
|
| 126 |
-
|
|
|
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
out[k] = gr.AnnotatedImage.update(visible=True)
|
| 132 |
-
return out
|
| 133 |
-
|
| 134 |
-
def section(img, num_segments):
|
| 135 |
-
sections = []
|
| 136 |
-
for b in range(num_segments):
|
| 137 |
-
x = random.randint(0, img.shape[1])
|
| 138 |
-
y = random.randint(0, img.shape[0])
|
| 139 |
-
r = random.randint(0, min(x, y, img.shape[1] - x, img.shape[0] - y))
|
| 140 |
-
mask = np.zeros(img.shape[:2])
|
| 141 |
-
for i in range(img.shape[0]):
|
| 142 |
-
for j in range(img.shape[1]):
|
| 143 |
-
dist_square = (i - y) ** 2 + (j - x) ** 2
|
| 144 |
-
if dist_square < r**2:
|
| 145 |
-
mask[i, j] = round((r**2 - dist_square) / r**2 * 4) / 4
|
| 146 |
-
sections.append((mask, "parenchyma"))
|
| 147 |
-
return (img, sections)
|
| 148 |
-
|
| 149 |
-
with gr.Row():
|
| 150 |
-
s = gr.Slider(1, len(images), value=1, step=1, label="Which 2D slice to show")
|
| 151 |
-
|
| 152 |
-
with gr.Row():
|
| 153 |
-
with gr.Box():
|
| 154 |
-
images_boxes = []
|
| 155 |
-
for i, image in enumerate(images):
|
| 156 |
-
visibility = True if i == 1 else False # only first slide visible - change slide through slider
|
| 157 |
-
t = gr.AnnotatedImage(value=section(image, 1), visible=visibility).style(color_map={"parenchyma": "#ffae00"}, width=image.shape[1])
|
| 158 |
-
images_boxes.append(t)
|
| 159 |
|
| 160 |
-
s.change(variable_outputs, s, images_boxes)
|
| 161 |
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
#section_btn.click(section, [images[40], num_boxes, num_segments], img_output)
|
| 166 |
-
#ct_images.upload(section, [images[40], num_boxes, num_segments], img_output)
|
| 167 |
-
|
| 168 |
-
#demo = gr.Interface(
|
| 169 |
-
# fn=load_ct_to_numpy,
|
| 170 |
-
# inputs=gr.UploadButton(label="Click to Upload a File", file_types=[".nii", ".nii.nz"], file_count="single"),
|
| 171 |
-
# outputs=gr.Gallery(label="CT slices").style(columns=[4], rows=[4], object_fit="contain", height="auto"),
|
| 172 |
-
# title="livermask: Automatic Liver Parenchyma segmentation in CT",
|
| 173 |
-
# description="Using pretrained deep learning model trained on the LiTS17 dataset",
|
| 174 |
-
#)
|
| 175 |
-
|
| 176 |
-
# sharing app publicly -> share=True: https://gradio.app/sharing-your-app/
|
| 177 |
-
# inference times > 60 seconds -> need queue(): https://github.com/tloen/alpaca-lora/issues/60#issuecomment-1510006062
|
| 178 |
-
demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=True)
|
|
|
|
| 1 |
+
from src.gui import WebUI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
|
| 4 |
+
def main():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
print("Launching demo...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
model_name = "/home/user/app/model.h5" # "/Users/andreped/workspace/livermask/model.h5"
|
| 8 |
+
class_name = "parenchyma"
|
| 9 |
|
| 10 |
+
# initialize and run app
|
| 11 |
+
app = WebUI(model_name=model_name, class_name=class_name)
|
| 12 |
+
app.run()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
|
|
|
| 14 |
|
| 15 |
+
if __name__ == "__main__":
|
| 16 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
demo/src/__init__.py
ADDED
|
File without changes
|
demo/src/compute.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
def run_model(input_path, model_name="/home/user/app/model.h5"):
|
| 4 |
+
from livermask.utils.run import run_analysis
|
| 5 |
+
run_analysis(cpu=True, extension='.nii', path=input_path, output='prediction', verbose=True, vessels=False, name=model_name, mp_enabled=False)
|
| 6 |
+
|
demo/src/convert.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import nibabel as nib
|
| 2 |
+
from nibabel.processing import resample_to_output
|
| 3 |
+
from skimage.measure import marching_cubes
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def nifti_to_glb(path, output="prediction.obj"):
|
| 7 |
+
# load NIFTI into numpy array
|
| 8 |
+
image = nib.load(path)
|
| 9 |
+
resampled = resample_to_output(image, [1, 1, 1], order=1)
|
| 10 |
+
data = resampled.get_fdata().astype("uint8")
|
| 11 |
+
|
| 12 |
+
# extract surface
|
| 13 |
+
verts, faces, normals, values = marching_cubes(data, 0)
|
| 14 |
+
faces += 1
|
| 15 |
+
|
| 16 |
+
with open(output, 'w') as thefile:
|
| 17 |
+
for item in verts:
|
| 18 |
+
thefile.write("v {0} {1} {2}\n".format(item[0],item[1],item[2]))
|
| 19 |
+
|
| 20 |
+
for item in normals:
|
| 21 |
+
thefile.write("vn {0} {1} {2}\n".format(item[0],item[1],item[2]))
|
| 22 |
+
|
| 23 |
+
for item in faces:
|
| 24 |
+
thefile.write("f {0}//{0} {1}//{1} {2}//{2}\n".format(item[0],item[1],item[2]))
|
demo/src/gui.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from .utils import load_ct_to_numpy, load_pred_volume_to_numpy
|
| 3 |
+
from .compute import run_model
|
| 4 |
+
from .convert import nifti_to_glb
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class WebUI:
|
| 8 |
+
def __init__(self, model_name, class_name):
|
| 9 |
+
# global states
|
| 10 |
+
self.images = []
|
| 11 |
+
self.pred_images = []
|
| 12 |
+
|
| 13 |
+
self.nb_slider_items = 100
|
| 14 |
+
|
| 15 |
+
self.model_name = model_name
|
| 16 |
+
self.class_name = class_name
|
| 17 |
+
|
| 18 |
+
# define widgets not to be rendered immediantly, but later on
|
| 19 |
+
self.slider = gr.Slider(1, self.nb_slider_items, value=1, step=1, label="Which 2D slice to show")
|
| 20 |
+
self.volume_renderer = gr.Model3D(
|
| 21 |
+
clear_color=[0.0, 0.0, 0.0, 0.0],
|
| 22 |
+
label="3D Model",
|
| 23 |
+
visible=True
|
| 24 |
+
).style(height=512)
|
| 25 |
+
|
| 26 |
+
def combine_ct_and_seg(self, img, pred):
|
| 27 |
+
return (img, [(pred, self.class_name)])
|
| 28 |
+
|
| 29 |
+
def upload_file(self, file):
|
| 30 |
+
return file.name
|
| 31 |
+
|
| 32 |
+
def load_mesh(self, mesh_file_name, model_name="/home/user/app/model.h5"):
|
| 33 |
+
path = mesh_file_name.name
|
| 34 |
+
run_model(path, model_name)
|
| 35 |
+
nifti_to_glb("prediction-livermask.nii")
|
| 36 |
+
self.images = load_ct_to_numpy("./files/test_ct.nii")
|
| 37 |
+
self.pred_images = load_pred_volume_to_numpy("./prediction-livermask.nii")
|
| 38 |
+
self.slider = self.slider.update(value=2)
|
| 39 |
+
return "./prediction.obj"
|
| 40 |
+
|
| 41 |
+
def get_img_pred_pair(self, k):
|
| 42 |
+
k = int(k) - 1
|
| 43 |
+
out = [gr.AnnotatedImage.update(visible=False)] * self.nb_slider_items
|
| 44 |
+
out[k] = gr.AnnotatedImage.update(self.combine_ct_and_seg(self.images[k], self.pred_images[k]), visible=True)
|
| 45 |
+
return out
|
| 46 |
+
|
| 47 |
+
def run(self):
|
| 48 |
+
with gr.Blocks() as demo:
|
| 49 |
+
|
| 50 |
+
with gr.Row().style(equal_height=True):
|
| 51 |
+
file_output = gr.File(file_types=[".nii", ".nii.nz"], file_count="single").style(full_width=False, size="sm")
|
| 52 |
+
file_output.upload(self.upload_file, file_output, file_output)
|
| 53 |
+
|
| 54 |
+
run_btn = gr.Button("Run analysis").style(full_width=False, size="sm")
|
| 55 |
+
run_btn.click(fn=lambda x: self.load_mesh(x, model_name=self.model_name), inputs=file_output, outputs=self.volume_renderer)
|
| 56 |
+
|
| 57 |
+
with gr.Row().style(equal_height=True):
|
| 58 |
+
with gr.Box():
|
| 59 |
+
image_boxes = []
|
| 60 |
+
for i in range(self.nb_slider_items):
|
| 61 |
+
visibility = True if i == 1 else False
|
| 62 |
+
t = gr.AnnotatedImage(visible=visibility)\
|
| 63 |
+
.style(color_map={self.class_name: "#ffae00"}, height=512, width=512)
|
| 64 |
+
image_boxes.append(t)
|
| 65 |
+
|
| 66 |
+
self.slider.change(self.get_img_pred_pair, self.slider, image_boxes)
|
| 67 |
+
|
| 68 |
+
with gr.Box():
|
| 69 |
+
self.volume_renderer.render()
|
| 70 |
+
|
| 71 |
+
with gr.Row():
|
| 72 |
+
self.slider.render()
|
| 73 |
+
|
| 74 |
+
# sharing app publicly -> share=True: https://gradio.app/sharing-your-app/
|
| 75 |
+
# inference times > 60 seconds -> need queue(): https://github.com/tloen/alpaca-lora/issues/60#issuecomment-1510006062
|
| 76 |
+
demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=True)
|
demo/src/utils.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import nibabel as nib
|
| 2 |
+
import numpy as np
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def load_ct_to_numpy(data_path):
|
| 6 |
+
if type(data_path) != str:
|
| 7 |
+
data_path = data_path.name
|
| 8 |
+
|
| 9 |
+
image = nib.load(data_path)
|
| 10 |
+
data = image.get_fdata()
|
| 11 |
+
|
| 12 |
+
data = np.rot90(data, k=1, axes=(0, 1))
|
| 13 |
+
|
| 14 |
+
data[data < -150] = -150
|
| 15 |
+
data[data > 250] = 250
|
| 16 |
+
|
| 17 |
+
data = data - np.amin(data)
|
| 18 |
+
data = data / np.amax(data) * 255
|
| 19 |
+
data = data.astype("uint8")
|
| 20 |
+
|
| 21 |
+
print(data.shape)
|
| 22 |
+
return [data[..., i] for i in range(data.shape[-1])]
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def load_pred_volume_to_numpy(data_path):
|
| 26 |
+
if type(data_path) != str:
|
| 27 |
+
data_path = data_path.name
|
| 28 |
+
|
| 29 |
+
image = nib.load(data_path)
|
| 30 |
+
data = image.get_fdata()
|
| 31 |
+
|
| 32 |
+
data = np.rot90(data, k=1, axes=(0, 1))
|
| 33 |
+
|
| 34 |
+
data[data > 0] = 1
|
| 35 |
+
data = data.astype("uint8")
|
| 36 |
+
|
| 37 |
+
print(data.shape)
|
| 38 |
+
return [data[..., i] for i in range(data.shape[-1])]
|