Linted code
Browse files- demo/app.py +1 -2
- demo/src/convert.py +1 -5
- demo/src/gui.py +5 -15
- demo/src/inference.py +2 -10
demo/app.py
CHANGED
|
@@ -16,8 +16,7 @@ def main():
|
|
| 16 |
"--share",
|
| 17 |
type=int,
|
| 18 |
default=0,
|
| 19 |
-
help="Whether to enable the app to be accessible online"
|
| 20 |
-
"-> setups a public link which requires internet access.",
|
| 21 |
)
|
| 22 |
args = parser.parse_args()
|
| 23 |
|
|
|
|
| 16 |
"--share",
|
| 17 |
type=int,
|
| 18 |
default=0,
|
| 19 |
+
help="Whether to enable the app to be accessible online" "-> setups a public link which requires internet access.",
|
|
|
|
| 20 |
)
|
| 21 |
args = parser.parse_args()
|
| 22 |
|
demo/src/convert.py
CHANGED
|
@@ -28,8 +28,4 @@ def nifti_to_obj(path, output="prediction.obj"):
|
|
| 28 |
thefile.write("vn {0} {1} {2}\n".format(item[0], item[1], item[2]))
|
| 29 |
|
| 30 |
for item in faces:
|
| 31 |
-
thefile.write(
|
| 32 |
-
"f {0}//{0} {1}//{1} {2}//{2}\n".format(
|
| 33 |
-
item[0], item[1], item[2]
|
| 34 |
-
)
|
| 35 |
-
)
|
|
|
|
| 28 |
thefile.write("vn {0} {1} {2}\n".format(item[0], item[1], item[2]))
|
| 29 |
|
| 30 |
for item in faces:
|
| 31 |
+
thefile.write("f {0}//{0} {1}//{1} {2}//{2}\n".format(item[0], item[1], item[2]))
|
|
|
|
|
|
|
|
|
|
|
|
demo/src/gui.py
CHANGED
|
@@ -141,17 +141,11 @@ class WebUI:
|
|
| 141 |
[sidebar_left, sidebar_state],
|
| 142 |
)
|
| 143 |
|
| 144 |
-
btn_clear_logs = gr.Button(
|
| 145 |
-
"Clear logs", elem_id="logs-button"
|
| 146 |
-
)
|
| 147 |
btn_clear_logs.click(flush_logs, [], [])
|
| 148 |
|
| 149 |
-
file_output = gr.File(
|
| 150 |
-
|
| 151 |
-
)
|
| 152 |
-
file_output.upload(
|
| 153 |
-
self.upload_file, file_output, file_output
|
| 154 |
-
)
|
| 155 |
|
| 156 |
model_selector = gr.Dropdown(
|
| 157 |
list(self.class_names.keys()),
|
|
@@ -203,9 +197,7 @@ class WebUI:
|
|
| 203 |
with gr.Box():
|
| 204 |
with gr.Column():
|
| 205 |
# create dummy image to be replaced by loaded images
|
| 206 |
-
t = gr.AnnotatedImage(
|
| 207 |
-
visible=True, elem_id="model-2d"
|
| 208 |
-
).style(
|
| 209 |
color_map={self.class_name: "#ffae00"},
|
| 210 |
height=512,
|
| 211 |
width=512,
|
|
@@ -226,6 +218,4 @@ class WebUI:
|
|
| 226 |
# https://gradio.app/sharing-your-app/
|
| 227 |
# inference times > 60 seconds -> need queue():
|
| 228 |
# https://github.com/tloen/alpaca-lora/issues/60#issuecomment-1510006062
|
| 229 |
-
demo.queue().launch(
|
| 230 |
-
server_name="0.0.0.0", server_port=7860, share=self.share
|
| 231 |
-
)
|
|
|
|
| 141 |
[sidebar_left, sidebar_state],
|
| 142 |
)
|
| 143 |
|
| 144 |
+
btn_clear_logs = gr.Button("Clear logs", elem_id="logs-button")
|
|
|
|
|
|
|
| 145 |
btn_clear_logs.click(flush_logs, [], [])
|
| 146 |
|
| 147 |
+
file_output = gr.File(file_count="single", elem_id="upload")
|
| 148 |
+
file_output.upload(self.upload_file, file_output, file_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
model_selector = gr.Dropdown(
|
| 151 |
list(self.class_names.keys()),
|
|
|
|
| 197 |
with gr.Box():
|
| 198 |
with gr.Column():
|
| 199 |
# create dummy image to be replaced by loaded images
|
| 200 |
+
t = gr.AnnotatedImage(visible=True, elem_id="model-2d").style(
|
|
|
|
|
|
|
| 201 |
color_map={self.class_name: "#ffae00"},
|
| 202 |
height=512,
|
| 203 |
width=512,
|
|
|
|
| 218 |
# https://gradio.app/sharing-your-app/
|
| 219 |
# inference times > 60 seconds -> need queue():
|
| 220 |
# https://github.com/tloen/alpaca-lora/issues/60#issuecomment-1510006062
|
| 221 |
+
demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=self.share)
|
|
|
|
|
|
demo/src/inference.py
CHANGED
|
@@ -61,9 +61,7 @@ def run_model(
|
|
| 61 |
os.path.join(model_path, task, "pipeline.json"),
|
| 62 |
)
|
| 63 |
rads_config.add_section("Runtime")
|
| 64 |
-
rads_config.set(
|
| 65 |
-
"Runtime", "reconstruction_method", "thresholding"
|
| 66 |
-
) # thresholding, probabilities
|
| 67 |
rads_config.set("Runtime", "reconstruction_order", "resample_first")
|
| 68 |
rads_config.set("Runtime", "use_preprocessed_data", "False")
|
| 69 |
|
|
@@ -77,13 +75,7 @@ def run_model(
|
|
| 77 |
|
| 78 |
# rename and move final result
|
| 79 |
os.rename(
|
| 80 |
-
"./result/prediction-"
|
| 81 |
-
+ splits[0]
|
| 82 |
-
+ "/T0/"
|
| 83 |
-
+ splits[0]
|
| 84 |
-
+ "-t1gd_annotation-"
|
| 85 |
-
+ name
|
| 86 |
-
+ ".nii.gz",
|
| 87 |
"./prediction.nii.gz",
|
| 88 |
)
|
| 89 |
# Clean-up
|
|
|
|
| 61 |
os.path.join(model_path, task, "pipeline.json"),
|
| 62 |
)
|
| 63 |
rads_config.add_section("Runtime")
|
| 64 |
+
rads_config.set("Runtime", "reconstruction_method", "thresholding") # thresholding, probabilities
|
|
|
|
|
|
|
| 65 |
rads_config.set("Runtime", "reconstruction_order", "resample_first")
|
| 66 |
rads_config.set("Runtime", "use_preprocessed_data", "False")
|
| 67 |
|
|
|
|
| 75 |
|
| 76 |
# rename and move final result
|
| 77 |
os.rename(
|
| 78 |
+
"./result/prediction-" + splits[0] + "/T0/" + splits[0] + "-t1gd_annotation-" + name + ".nii.gz",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
"./prediction.nii.gz",
|
| 80 |
)
|
| 81 |
# Clean-up
|