Spaces:
Running
Running
| import shutil | |
| from typing import List | |
| from haystack import Document | |
| from haystack.document_stores import FAISSDocumentStore | |
| from haystack.nodes import EmbeddingRetriever, PromptNode | |
| from haystack.pipelines import Pipeline | |
| import streamlit as st | |
| from haystack_entailment_checker import EntailmentChecker | |
| from app_utils.config import ( | |
| STATEMENTS_PATH, | |
| INDEX_DIR, | |
| RETRIEVER_MODEL, | |
| RETRIEVER_MODEL_FORMAT, | |
| NLI_MODEL, | |
| PROMPT_MODEL, | |
| ) | |
| def load_statements(): | |
| """Load statements from file""" | |
| with open(STATEMENTS_PATH) as fin: | |
| statements = [ | |
| line.strip() for line in fin.readlines() if not line.startswith("#") | |
| ] | |
| return statements | |
| # cached to make index and models load only at start | |
| def start_haystack(): | |
| """ | |
| load document store, retriever, entailment checker and create pipeline | |
| """ | |
| shutil.copy(f"{INDEX_DIR}/faiss_document_store.db", ".") | |
| document_store = FAISSDocumentStore( | |
| faiss_index_path=f"{INDEX_DIR}/my_faiss_index.faiss", | |
| faiss_config_path=f"{INDEX_DIR}/my_faiss_index.json", | |
| ) | |
| print(f"Index size: {document_store.get_document_count()}") | |
| retriever = EmbeddingRetriever( | |
| document_store=document_store, | |
| embedding_model=RETRIEVER_MODEL, | |
| model_format=RETRIEVER_MODEL_FORMAT, | |
| ) | |
| entailment_checker = EntailmentChecker( | |
| model_name_or_path=NLI_MODEL, | |
| use_gpu=False, | |
| entailment_contradiction_threshold=0.5, | |
| ) | |
| pipe = Pipeline() | |
| pipe.add_node(component=retriever, name="retriever", inputs=["Query"]) | |
| pipe.add_node(component=entailment_checker, name="ec", inputs=["retriever"]) | |
| prompt_node = PromptNode(model_name_or_path=PROMPT_MODEL, max_length=150, | |
| model_kwargs={"task_name": "text2text-generation"}) | |
| return pipe, prompt_node | |
| pipe, prompt_node = start_haystack() | |
| # the pipeline is not included as parameter of the following function, | |
| # because it is difficult to cache | |
| def check_statement(statement: str, retriever_top_k: int = 5): | |
| """Run query and verify statement""" | |
| params = {"retriever": {"top_k": retriever_top_k}} | |
| return pipe.run(statement, params=params) | |
| def explain_using_llm( | |
| statement: str, documents: List[Document], entailment_or_contradiction: str | |
| ) -> str: | |
| """Explain entailment/contradiction, by prompting a LLM""" | |
| premise = " \n".join([doc.content.replace("\n", ". ") for doc in documents]) | |
| if entailment_or_contradiction == "entailment": | |
| verb = "entails" | |
| elif entailment_or_contradiction == "contradiction": | |
| verb = "contradicts" | |
| prompt = f"Premise: {premise}; Hypothesis: {statement}; Please explain in detail why the Premise {verb} the Hypothesis. Step by step Explanation:" | |
| print(prompt) | |
| return prompt_node(prompt)[0] | |