Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	| # Copyright (c) 2023 Amphion. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| # This module is modified from [Whisper](https://github.com/openai/whisper.git). | |
| # ## Citations | |
| # ```bibtex | |
| # @inproceedings{openai-whisper, | |
| # author = {Alec Radford and | |
| # Jong Wook Kim and | |
| # Tao Xu and | |
| # Greg Brockman and | |
| # Christine McLeavey and | |
| # Ilya Sutskever}, | |
| # title = {Robust Speech Recognition via Large-Scale Weak Supervision}, | |
| # booktitle = {{ICML}}, | |
| # series = {Proceedings of Machine Learning Research}, | |
| # volume = {202}, | |
| # pages = {28492--28518}, | |
| # publisher = {{PMLR}}, | |
| # year = {2023} | |
| # } | |
| # ``` | |
| # | |
| import os | |
| from functools import lru_cache | |
| from typing import Union | |
| import ffmpeg | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from .utils import exact_div | |
| # hard-coded audio hyperparameters | |
| SAMPLE_RATE = 16000 | |
| N_FFT = 400 | |
| N_MELS = 80 | |
| HOP_LENGTH = 160 | |
| CHUNK_LENGTH = 30 | |
| N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000: number of samples in a chunk | |
| N_FRAMES = exact_div( | |
| N_SAMPLES, HOP_LENGTH | |
| ) # 3000: number of frames in a mel spectrogram input | |
| def load_audio(file: str, sr: int = SAMPLE_RATE): | |
| """ | |
| Open an audio file and read as mono waveform, resampling as necessary | |
| Parameters | |
| ---------- | |
| file: str | |
| The audio file to open | |
| sr: int | |
| The sample rate to resample the audio if necessary | |
| Returns | |
| ------- | |
| A NumPy array containing the audio waveform, in float32 dtype. | |
| """ | |
| try: | |
| # This launches a subprocess to decode audio while down-mixing and resampling as necessary. | |
| # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed. | |
| out, _ = ( | |
| ffmpeg.input(file, threads=0) | |
| .output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr) | |
| .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True) | |
| ) | |
| except ffmpeg.Error as e: | |
| raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e | |
| return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0 | |
| def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1): | |
| """ | |
| Pad or trim the audio array to N_SAMPLES, as expected by the encoder. | |
| """ | |
| if torch.is_tensor(array): | |
| if array.shape[axis] > length: | |
| array = array.index_select( | |
| dim=axis, index=torch.arange(length, device=array.device) | |
| ) | |
| if array.shape[axis] < length: | |
| pad_widths = [(0, 0)] * array.ndim | |
| pad_widths[axis] = (0, length - array.shape[axis]) | |
| array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes]) | |
| else: | |
| if array.shape[axis] > length: | |
| array = array.take(indices=range(length), axis=axis) | |
| if array.shape[axis] < length: | |
| pad_widths = [(0, 0)] * array.ndim | |
| pad_widths[axis] = (0, length - array.shape[axis]) | |
| array = np.pad(array, pad_widths) | |
| return array | |
| def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor: | |
| """ | |
| load the mel filterbank matrix for projecting STFT into a Mel spectrogram. | |
| Allows decoupling librosa dependency; saved using: | |
| np.savez_compressed( | |
| "mel_filters.npz", | |
| mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80), | |
| ) | |
| """ | |
| assert n_mels == 80, f"Unsupported n_mels: {n_mels}" | |
| with np.load( | |
| os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz") | |
| ) as f: | |
| return torch.from_numpy(f[f"mel_{n_mels}"]).to(device) | |
| def log_mel_spectrogram( | |
| audio: Union[str, np.ndarray, torch.Tensor], n_mels: int = N_MELS | |
| ): | |
| """ | |
| Compute the log-Mel spectrogram of | |
| Parameters | |
| ---------- | |
| audio: Union[str, np.ndarray, torch.Tensor], shape = (*) | |
| The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz | |
| n_mels: int | |
| The number of Mel-frequency filters, only 80 is supported | |
| Returns | |
| ------- | |
| torch.Tensor, shape = (80, n_frames) | |
| A Tensor that contains the Mel spectrogram | |
| """ | |
| if not torch.is_tensor(audio): | |
| if isinstance(audio, str): | |
| audio = load_audio(audio) | |
| audio = torch.from_numpy(audio) | |
| window = torch.hann_window(N_FFT).to(audio.device) | |
| stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True) | |
| magnitudes = stft[..., :-1].abs() ** 2 | |
| filters = mel_filters(audio.device, n_mels) | |
| mel_spec = filters @ magnitudes | |
| log_spec = torch.clamp(mel_spec, min=1e-10).log10() | |
| log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) | |
| log_spec = (log_spec + 4.0) / 4.0 | |
| return log_spec | |