Spaces:
Running
Running
| # Copyright (c) 2023 Amphion. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import os | |
| import json | |
| import librosa | |
| from tqdm import tqdm | |
| from collections import defaultdict | |
| from utils.util import has_existed | |
| from preprocessors import GOLDEN_TEST_SAMPLES | |
| def get_test_songs(): | |
| golden_samples = GOLDEN_TEST_SAMPLES["m4singer"] | |
| # every item is a tuple (singer, song) | |
| golden_songs = [s.split("_")[:2] for s in golden_samples] | |
| # singer_song, eg: Alto-1_美错 | |
| golden_songs = ["_".join(t) for t in golden_songs] | |
| return golden_songs | |
| def m4singer_statistics(meta): | |
| singers = [] | |
| songs = [] | |
| singer2songs = defaultdict(lambda: defaultdict(list)) | |
| for utt in meta: | |
| p, s, uid = utt["item_name"].split("#") | |
| singers.append(p) | |
| songs.append(s) | |
| singer2songs[p][s].append(uid) | |
| unique_singers = list(set(singers)) | |
| unique_songs = list(set(songs)) | |
| unique_singers.sort() | |
| unique_songs.sort() | |
| print( | |
| "M4Singer: {} singers, {} utterances ({} unique songs)".format( | |
| len(unique_singers), len(songs), len(unique_songs) | |
| ) | |
| ) | |
| print("Singers: \n{}".format("\t".join(unique_singers))) | |
| return singer2songs, unique_singers | |
| def main(output_path, dataset_path): | |
| print("-" * 10) | |
| print("Preparing test samples for m4singer...\n") | |
| save_dir = os.path.join(output_path, "m4singer") | |
| os.makedirs(save_dir, exist_ok=True) | |
| train_output_file = os.path.join(save_dir, "train.json") | |
| test_output_file = os.path.join(save_dir, "test.json") | |
| singer_dict_file = os.path.join(save_dir, "singers.json") | |
| utt2singer_file = os.path.join(save_dir, "utt2singer") | |
| if ( | |
| has_existed(train_output_file) | |
| and has_existed(test_output_file) | |
| and has_existed(singer_dict_file) | |
| and has_existed(utt2singer_file) | |
| ): | |
| return | |
| utt2singer = open(utt2singer_file, "w") | |
| # Load | |
| m4singer_dir = dataset_path | |
| meta_file = os.path.join(m4singer_dir, "meta.json") | |
| with open(meta_file, "r", encoding="utf-8") as f: | |
| meta = json.load(f) | |
| singer2songs, unique_singers = m4singer_statistics(meta) | |
| test_songs = get_test_songs() | |
| # We select songs of standard samples as test songs | |
| train = [] | |
| test = [] | |
| train_index_count = 0 | |
| test_index_count = 0 | |
| train_total_duration = 0 | |
| test_total_duration = 0 | |
| for singer, songs in tqdm(singer2songs.items()): | |
| song_names = list(songs.keys()) | |
| for chosen_song in song_names: | |
| chosen_song = chosen_song.replace(" ", "-") | |
| for chosen_uid in songs[chosen_song]: | |
| res = { | |
| "Dataset": "m4singer", | |
| "Singer": singer, | |
| "Song": chosen_song, | |
| "Uid": "{}_{}_{}".format(singer, chosen_song, chosen_uid), | |
| } | |
| res["Path"] = os.path.join( | |
| m4singer_dir, "{}#{}/{}.wav".format(singer, chosen_song, chosen_uid) | |
| ) | |
| assert os.path.exists(res["Path"]) | |
| duration = librosa.get_duration(filename=res["Path"]) | |
| res["Duration"] = duration | |
| if "_".join([singer, chosen_song]) in test_songs: | |
| res["index"] = test_index_count | |
| test_total_duration += duration | |
| test.append(res) | |
| test_index_count += 1 | |
| else: | |
| res["index"] = train_index_count | |
| train_total_duration += duration | |
| train.append(res) | |
| train_index_count += 1 | |
| utt2singer.write("{}\t{}\n".format(res["Uid"], res["Singer"])) | |
| print("#Train = {}, #Test = {}".format(len(train), len(test))) | |
| print( | |
| "#Train hours= {}, #Test hours= {}".format( | |
| train_total_duration / 3600, test_total_duration / 3600 | |
| ) | |
| ) | |
| # Save train.json and test.json | |
| with open(train_output_file, "w") as f: | |
| json.dump(train, f, indent=4, ensure_ascii=False) | |
| with open(test_output_file, "w") as f: | |
| json.dump(test, f, indent=4, ensure_ascii=False) | |
| # Save singers.json | |
| singer_lut = {name: i for i, name in enumerate(unique_singers)} | |
| with open(singer_dict_file, "w") as f: | |
| json.dump(singer_lut, f, indent=4, ensure_ascii=False) | |