Spaces:
Running
Running
| # Copyright (c) 2023 Amphion. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from .basic import UNetBlock | |
| from modules.general.utils import ( | |
| append_dims, | |
| ConvNd, | |
| normalization, | |
| zero_module, | |
| ) | |
| class ResBlock(UNetBlock): | |
| r"""A residual block that can optionally change the number of channels. | |
| Args: | |
| channels: the number of input channels. | |
| emb_channels: the number of timestep embedding channels. | |
| dropout: the rate of dropout. | |
| out_channels: if specified, the number of out channels. | |
| use_conv: if True and out_channels is specified, use a spatial | |
| convolution instead of a smaller 1x1 convolution to change the | |
| channels in the skip connection. | |
| dims: determines if the signal is 1D, 2D, or 3D. | |
| up: if True, use this block for upsampling. | |
| down: if True, use this block for downsampling. | |
| """ | |
| def __init__( | |
| self, | |
| channels, | |
| emb_channels, | |
| dropout: float = 0.0, | |
| out_channels=None, | |
| use_conv=False, | |
| use_scale_shift_norm=False, | |
| dims=2, | |
| up=False, | |
| down=False, | |
| ): | |
| super().__init__() | |
| self.channels = channels | |
| self.emb_channels = emb_channels | |
| self.dropout = dropout | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.use_scale_shift_norm = use_scale_shift_norm | |
| self.in_layers = nn.Sequential( | |
| normalization(channels), | |
| nn.SiLU(), | |
| ConvNd(dims, channels, self.out_channels, 3, padding=1), | |
| ) | |
| self.updown = up or down | |
| if up: | |
| self.h_upd = Upsample(channels, False, dims) | |
| self.x_upd = Upsample(channels, False, dims) | |
| elif down: | |
| self.h_upd = Downsample(channels, False, dims) | |
| self.x_upd = Downsample(channels, False, dims) | |
| else: | |
| self.h_upd = self.x_upd = nn.Identity() | |
| self.emb_layers = nn.Sequential( | |
| nn.SiLU(), | |
| ConvNd( | |
| dims, | |
| emb_channels, | |
| 2 * self.out_channels if use_scale_shift_norm else self.out_channels, | |
| 1, | |
| ), | |
| ) | |
| self.out_layers = nn.Sequential( | |
| normalization(self.out_channels), | |
| nn.SiLU(), | |
| nn.Dropout(p=dropout), | |
| zero_module( | |
| ConvNd(dims, self.out_channels, self.out_channels, 3, padding=1) | |
| ), | |
| ) | |
| if self.out_channels == channels: | |
| self.skip_connection = nn.Identity() | |
| elif use_conv: | |
| self.skip_connection = ConvNd( | |
| dims, channels, self.out_channels, 3, padding=1 | |
| ) | |
| else: | |
| self.skip_connection = ConvNd(dims, channels, self.out_channels, 1) | |
| def forward(self, x, emb): | |
| """ | |
| Apply the block to a Tensor, conditioned on a timestep embedding. | |
| x: an [N x C x ...] Tensor of features. | |
| emb: an [N x emb_channels x ...] Tensor of timestep embeddings. | |
| :return: an [N x C x ...] Tensor of outputs. | |
| """ | |
| if self.updown: | |
| in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
| h = in_rest(x) | |
| h = self.h_upd(h) | |
| x = self.x_upd(x) | |
| h = in_conv(h) | |
| else: | |
| h = self.in_layers(x) | |
| emb_out = self.emb_layers(emb) | |
| emb_out = append_dims(emb_out, h.dim()) | |
| if self.use_scale_shift_norm: | |
| out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | |
| scale, shift = torch.chunk(emb_out, 2, dim=1) | |
| h = out_norm(h) * (1 + scale) + shift | |
| h = out_rest(h) | |
| else: | |
| h = h + emb_out | |
| h = self.out_layers(h) | |
| return self.skip_connection(x) + h | |
| class Upsample(nn.Module): | |
| r"""An upsampling layer with an optional convolution. | |
| Args: | |
| channels: channels in the inputs and outputs. | |
| dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
| upsampling occurs in the inner-two dimensions. | |
| out_channels: if specified, the number of out channels. | |
| """ | |
| def __init__(self, channels, dims=2, out_channels=None): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.dims = dims | |
| self.conv = ConvNd(dims, self.channels, self.out_channels, 3, padding=1) | |
| def forward(self, x): | |
| assert x.shape[1] == self.channels | |
| if self.dims == 3: | |
| x = F.interpolate( | |
| x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" | |
| ) | |
| else: | |
| x = F.interpolate(x, scale_factor=2, mode="nearest") | |
| x = self.conv(x) | |
| return x | |
| class Downsample(nn.Module): | |
| r"""A downsampling layer with an optional convolution. | |
| Args: | |
| channels: channels in the inputs and outputs. | |
| dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
| downsampling occurs in the inner-two dimensions. | |
| out_channels: if specified, the number of output channels. | |
| """ | |
| def __init__(self, channels, dims=2, out_channels=None): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.dims = dims | |
| stride = 2 if dims != 3 else (1, 2, 2) | |
| self.op = ConvNd( | |
| dims, self.channels, self.out_channels, 3, stride=stride, padding=1 | |
| ) | |
| def forward(self, x): | |
| assert x.shape[1] == self.channels | |
| return self.op(x) | |