Spaces:
Running
Running
| # Copyright (c) 2023 Amphion. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import torch | |
| from models.base.base_trainer import BaseTrainer | |
| from models.tta.autoencoder.autoencoder_dataset import ( | |
| AutoencoderKLDataset, | |
| AutoencoderKLCollator, | |
| ) | |
| from models.tta.autoencoder.autoencoder import AutoencoderKL | |
| from models.tta.autoencoder.autoencoder_loss import AutoencoderLossWithDiscriminator | |
| from torch.optim import Adam, AdamW | |
| from torch.optim.lr_scheduler import ReduceLROnPlateau | |
| from torch.nn import MSELoss, L1Loss | |
| import torch.nn.functional as F | |
| from torch.utils.data import ConcatDataset, DataLoader | |
| class AutoencoderKLTrainer(BaseTrainer): | |
| def __init__(self, args, cfg): | |
| BaseTrainer.__init__(self, args, cfg) | |
| self.cfg = cfg | |
| self.save_config_file() | |
| def build_dataset(self): | |
| return AutoencoderKLDataset, AutoencoderKLCollator | |
| def build_optimizer(self): | |
| opt_ae = torch.optim.AdamW(self.model.parameters(), **self.cfg.train.adam) | |
| opt_disc = torch.optim.AdamW( | |
| self.criterion.discriminator.parameters(), **self.cfg.train.adam | |
| ) | |
| optimizer = {"opt_ae": opt_ae, "opt_disc": opt_disc} | |
| return optimizer | |
| def build_data_loader(self): | |
| Dataset, Collator = self.build_dataset() | |
| # build dataset instance for each dataset and combine them by ConcatDataset | |
| datasets_list = [] | |
| for dataset in self.cfg.dataset: | |
| subdataset = Dataset(self.cfg, dataset, is_valid=False) | |
| datasets_list.append(subdataset) | |
| train_dataset = ConcatDataset(datasets_list) | |
| train_collate = Collator(self.cfg) | |
| # use batch_sampler argument instead of (sampler, shuffle, drop_last, batch_size) | |
| train_loader = DataLoader( | |
| train_dataset, | |
| collate_fn=train_collate, | |
| num_workers=self.args.num_workers, | |
| batch_size=self.cfg.train.batch_size, | |
| pin_memory=False, | |
| ) | |
| if not self.cfg.train.ddp or self.args.local_rank == 0: | |
| datasets_list = [] | |
| for dataset in self.cfg.dataset: | |
| subdataset = Dataset(self.cfg, dataset, is_valid=True) | |
| datasets_list.append(subdataset) | |
| valid_dataset = ConcatDataset(datasets_list) | |
| valid_collate = Collator(self.cfg) | |
| valid_loader = DataLoader( | |
| valid_dataset, | |
| collate_fn=valid_collate, | |
| num_workers=1, | |
| batch_size=self.cfg.train.batch_size, | |
| ) | |
| else: | |
| raise NotImplementedError("DDP is not supported yet.") | |
| # valid_loader = None | |
| data_loader = {"train": train_loader, "valid": valid_loader} | |
| return data_loader | |
| # TODO: check it... | |
| def build_scheduler(self): | |
| return None | |
| # return ReduceLROnPlateau(self.optimizer["opt_ae"], **self.cfg.train.lronPlateau) | |
| def write_summary(self, losses, stats): | |
| for key, value in losses.items(): | |
| self.sw.add_scalar(key, value, self.step) | |
| def write_valid_summary(self, losses, stats): | |
| for key, value in losses.items(): | |
| self.sw.add_scalar(key, value, self.step) | |
| def build_criterion(self): | |
| return AutoencoderLossWithDiscriminator(self.cfg.model.loss) | |
| def get_state_dict(self): | |
| if self.scheduler != None: | |
| state_dict = { | |
| "model": self.model.state_dict(), | |
| "optimizer_ae": self.optimizer["opt_ae"].state_dict(), | |
| "optimizer_disc": self.optimizer["opt_disc"].state_dict(), | |
| "scheduler": self.scheduler.state_dict(), | |
| "step": self.step, | |
| "epoch": self.epoch, | |
| "batch_size": self.cfg.train.batch_size, | |
| } | |
| else: | |
| state_dict = { | |
| "model": self.model.state_dict(), | |
| "optimizer_ae": self.optimizer["opt_ae"].state_dict(), | |
| "optimizer_disc": self.optimizer["opt_disc"].state_dict(), | |
| "step": self.step, | |
| "epoch": self.epoch, | |
| "batch_size": self.cfg.train.batch_size, | |
| } | |
| return state_dict | |
| def load_model(self, checkpoint): | |
| self.step = checkpoint["step"] | |
| self.epoch = checkpoint["epoch"] | |
| self.model.load_state_dict(checkpoint["model"]) | |
| self.optimizer["opt_ae"].load_state_dict(checkpoint["optimizer_ae"]) | |
| self.optimizer["opt_disc"].load_state_dict(checkpoint["optimizer_disc"]) | |
| if self.scheduler != None: | |
| self.scheduler.load_state_dict(checkpoint["scheduler"]) | |
| def build_model(self): | |
| self.model = AutoencoderKL(self.cfg.model.autoencoderkl) | |
| return self.model | |
| # TODO: train step | |
| def train_step(self, data): | |
| global_step = self.step | |
| optimizer_idx = global_step % 2 | |
| train_losses = {} | |
| total_loss = 0 | |
| train_states = {} | |
| inputs = data["melspec"].unsqueeze(1) # (B, 80, T) -> (B, 1, 80, T) | |
| reconstructions, posterior = self.model(inputs) | |
| # train_stats.update(stat) | |
| train_losses = self.criterion( | |
| inputs=inputs, | |
| reconstructions=reconstructions, | |
| posteriors=posterior, | |
| optimizer_idx=optimizer_idx, | |
| global_step=global_step, | |
| last_layer=self.model.get_last_layer(), | |
| split="train", | |
| ) | |
| if optimizer_idx == 0: | |
| total_loss = train_losses["loss"] | |
| self.optimizer["opt_ae"].zero_grad() | |
| total_loss.backward() | |
| self.optimizer["opt_ae"].step() | |
| else: | |
| total_loss = train_losses["d_loss"] | |
| self.optimizer["opt_disc"].zero_grad() | |
| total_loss.backward() | |
| self.optimizer["opt_disc"].step() | |
| for item in train_losses: | |
| train_losses[item] = train_losses[item].item() | |
| return train_losses, train_states, total_loss.item() | |
| # TODO: eval step | |
| def eval_step(self, data, index): | |
| valid_loss = {} | |
| total_valid_loss = 0 | |
| valid_stats = {} | |
| inputs = data["melspec"].unsqueeze(1) # (B, 80, T) -> (B, 1, 80, T) | |
| reconstructions, posterior = self.model(inputs) | |
| loss = F.l1_loss(inputs, reconstructions) | |
| valid_loss["loss"] = loss | |
| total_valid_loss += loss | |
| for item in valid_loss: | |
| valid_loss[item] = valid_loss[item].item() | |
| return valid_loss, valid_stats, total_valid_loss.item() | |