Spaces:
Running
Running
| # Copyright (c) 2023 Amphion. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import torch | |
| import torch.nn as nn | |
| import functools | |
| import torch.nn.functional as F | |
| def hinge_d_loss(logits_real, logits_fake): | |
| loss_real = torch.mean(F.relu(1.0 - logits_real)) | |
| loss_fake = torch.mean(F.relu(1.0 + logits_fake)) | |
| d_loss = 0.5 * (loss_real + loss_fake) | |
| return d_loss | |
| def vanilla_d_loss(logits_real, logits_fake): | |
| d_loss = 0.5 * ( | |
| torch.mean(F.softplus(-logits_real)) + torch.mean(F.softplus(logits_fake)) | |
| ) | |
| return d_loss | |
| def adopt_weight(weight, global_step, threshold=0, value=0.0): | |
| if global_step < threshold: | |
| weight = value | |
| return weight | |
| class ActNorm(nn.Module): | |
| def __init__( | |
| self, num_features, logdet=False, affine=True, allow_reverse_init=False | |
| ): | |
| assert affine | |
| super().__init__() | |
| self.logdet = logdet | |
| self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1)) | |
| self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1)) | |
| self.allow_reverse_init = allow_reverse_init | |
| self.register_buffer("initialized", torch.tensor(0, dtype=torch.uint8)) | |
| def initialize(self, input): | |
| with torch.no_grad(): | |
| flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1) | |
| mean = ( | |
| flatten.mean(1) | |
| .unsqueeze(1) | |
| .unsqueeze(2) | |
| .unsqueeze(3) | |
| .permute(1, 0, 2, 3) | |
| ) | |
| std = ( | |
| flatten.std(1) | |
| .unsqueeze(1) | |
| .unsqueeze(2) | |
| .unsqueeze(3) | |
| .permute(1, 0, 2, 3) | |
| ) | |
| self.loc.data.copy_(-mean) | |
| self.scale.data.copy_(1 / (std + 1e-6)) | |
| def forward(self, input, reverse=False): | |
| if reverse: | |
| return self.reverse(input) | |
| if len(input.shape) == 2: | |
| input = input[:, :, None, None] | |
| squeeze = True | |
| else: | |
| squeeze = False | |
| _, _, height, width = input.shape | |
| if self.training and self.initialized.item() == 0: | |
| self.initialize(input) | |
| self.initialized.fill_(1) | |
| h = self.scale * (input + self.loc) | |
| if squeeze: | |
| h = h.squeeze(-1).squeeze(-1) | |
| if self.logdet: | |
| log_abs = torch.log(torch.abs(self.scale)) | |
| logdet = height * width * torch.sum(log_abs) | |
| logdet = logdet * torch.ones(input.shape[0]).to(input) | |
| return h, logdet | |
| return h | |
| def reverse(self, output): | |
| if self.training and self.initialized.item() == 0: | |
| if not self.allow_reverse_init: | |
| raise RuntimeError( | |
| "Initializing ActNorm in reverse direction is " | |
| "disabled by default. Use allow_reverse_init=True to enable." | |
| ) | |
| else: | |
| self.initialize(output) | |
| self.initialized.fill_(1) | |
| if len(output.shape) == 2: | |
| output = output[:, :, None, None] | |
| squeeze = True | |
| else: | |
| squeeze = False | |
| h = output / self.scale - self.loc | |
| if squeeze: | |
| h = h.squeeze(-1).squeeze(-1) | |
| return h | |
| def weights_init(m): | |
| classname = m.__class__.__name__ | |
| if classname.find("Conv") != -1: | |
| nn.init.normal_(m.weight.data, 0.0, 0.02) | |
| elif classname.find("BatchNorm") != -1: | |
| nn.init.normal_(m.weight.data, 1.0, 0.02) | |
| nn.init.constant_(m.bias.data, 0) | |
| class NLayerDiscriminator(nn.Module): | |
| """Defines a PatchGAN discriminator as in Pix2Pix | |
| --> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py | |
| """ | |
| def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False): | |
| """Construct a PatchGAN discriminator | |
| Parameters: | |
| input_nc (int) -- the number of channels in input images | |
| ndf (int) -- the number of filters in the last conv layer | |
| n_layers (int) -- the number of conv layers in the discriminator | |
| norm_layer -- normalization layer | |
| """ | |
| super(NLayerDiscriminator, self).__init__() | |
| if not use_actnorm: | |
| norm_layer = nn.BatchNorm2d | |
| else: | |
| norm_layer = ActNorm | |
| if ( | |
| type(norm_layer) == functools.partial | |
| ): # no need to use bias as BatchNorm2d has affine parameters | |
| use_bias = norm_layer.func != nn.BatchNorm2d | |
| else: | |
| use_bias = norm_layer != nn.BatchNorm2d | |
| kw = 4 | |
| padw = 1 | |
| sequence = [ | |
| nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), | |
| nn.LeakyReLU(0.2, True), | |
| ] | |
| nf_mult = 1 | |
| nf_mult_prev = 1 | |
| for n in range(1, n_layers): # gradually increase the number of filters | |
| nf_mult_prev = nf_mult | |
| nf_mult = min(2**n, 8) | |
| sequence += [ | |
| nn.Conv2d( | |
| ndf * nf_mult_prev, | |
| ndf * nf_mult, | |
| kernel_size=kw, | |
| stride=2, | |
| padding=padw, | |
| bias=use_bias, | |
| ), | |
| norm_layer(ndf * nf_mult), | |
| nn.LeakyReLU(0.2, True), | |
| ] | |
| nf_mult_prev = nf_mult | |
| nf_mult = min(2**n_layers, 8) | |
| sequence += [ | |
| nn.Conv2d( | |
| ndf * nf_mult_prev, | |
| ndf * nf_mult, | |
| kernel_size=kw, | |
| stride=1, | |
| padding=padw, | |
| bias=use_bias, | |
| ), | |
| norm_layer(ndf * nf_mult), | |
| nn.LeakyReLU(0.2, True), | |
| ] | |
| sequence += [ | |
| nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw) | |
| ] # output 1 channel prediction map | |
| self.main = nn.Sequential(*sequence) | |
| def forward(self, input): | |
| """Standard forward.""" | |
| return self.main(input) | |
| class AutoencoderLossWithDiscriminator(nn.Module): | |
| def __init__(self, cfg): | |
| super().__init__() | |
| self.cfg = cfg | |
| self.kl_weight = cfg.kl_weight | |
| self.logvar = nn.Parameter(torch.ones(size=()) * cfg.logvar_init) | |
| self.discriminator = NLayerDiscriminator( | |
| input_nc=cfg.disc_in_channels, | |
| n_layers=cfg.disc_num_layers, | |
| use_actnorm=cfg.use_actnorm, | |
| ).apply(weights_init) | |
| self.discriminator_iter_start = cfg.disc_start | |
| self.discriminator_weight = cfg.disc_weight | |
| self.disc_factor = cfg.disc_factor | |
| self.disc_loss = hinge_d_loss | |
| def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer): | |
| nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] | |
| g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] | |
| d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) | |
| d_weight = torch.clamp( | |
| d_weight, self.cfg.min_adapt_d_weight, self.cfg.max_adapt_d_weight | |
| ).detach() | |
| d_weight = d_weight * self.discriminator_weight | |
| return d_weight | |
| def forward( | |
| self, | |
| inputs, | |
| reconstructions, | |
| posteriors, | |
| optimizer_idx, | |
| global_step, | |
| last_layer, | |
| split="train", | |
| weights=None, | |
| ): | |
| rec_loss = torch.abs( | |
| inputs.contiguous() - reconstructions.contiguous() | |
| ) # l1 loss | |
| nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar | |
| weighted_nll_loss = nll_loss | |
| if weights is not None: | |
| weighted_nll_loss = weights * nll_loss | |
| # weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0] | |
| weighted_nll_loss = torch.mean(weighted_nll_loss) | |
| # nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] | |
| nll_loss = torch.mean(nll_loss) | |
| kl_loss = posteriors.kl() | |
| kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] | |
| # ? kl_loss = torch.mean(kl_loss) | |
| # now the GAN part | |
| if optimizer_idx == 0: | |
| logits_fake = self.discriminator(reconstructions.contiguous()) | |
| g_loss = -torch.mean(logits_fake) | |
| if self.disc_factor > 0.0: | |
| try: | |
| d_weight = self.calculate_adaptive_weight( | |
| nll_loss, g_loss, last_layer=last_layer | |
| ) | |
| except RuntimeError: | |
| assert not self.training | |
| d_weight = torch.tensor(0.0) | |
| else: | |
| d_weight = torch.tensor(0.0) | |
| disc_factor = adopt_weight( | |
| self.disc_factor, global_step, threshold=self.discriminator_iter_start | |
| ) | |
| total_loss = ( | |
| weighted_nll_loss | |
| + self.kl_weight * kl_loss | |
| + d_weight * disc_factor * g_loss | |
| ) | |
| return { | |
| "loss": total_loss, | |
| "kl_loss": kl_loss, | |
| "rec_loss": rec_loss.mean(), | |
| "nll_loss": nll_loss, | |
| "g_loss": g_loss, | |
| "d_weight": d_weight, | |
| "disc_factor": torch.tensor(disc_factor), | |
| } | |
| if optimizer_idx == 1: | |
| logits_real = self.discriminator(inputs.contiguous().detach()) | |
| logits_fake = self.discriminator(reconstructions.contiguous().detach()) | |
| disc_factor = adopt_weight( | |
| self.disc_factor, global_step, threshold=self.discriminator_iter_start | |
| ) | |
| d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) | |
| return { | |
| "d_loss": d_loss, | |
| "logits_real": logits_real.mean(), | |
| "logits_fake": logits_fake.mean(), | |
| } | |