Spaces:
Running
Running
| # Copyright (c) 2023 Amphion. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import torch | |
| def slice_segments(x, ids_str, segment_size=200): | |
| ret = torch.zeros_like(x[:, :, :segment_size]) | |
| for i in range(x.size(0)): | |
| idx_str = ids_str[i] | |
| idx_end = idx_str + segment_size | |
| ret[i] = x[i, :, idx_str:idx_end] | |
| return ret | |
| def rand_ids_segments(lengths, segment_size=200): | |
| b = lengths.shape[0] | |
| ids_str_max = lengths - segment_size | |
| ids_str = (torch.rand([b]).to(device=lengths.device) * ids_str_max).to( | |
| dtype=torch.long | |
| ) | |
| return ids_str | |
| def fix_len_compatibility(length, num_downsamplings_in_unet=2): | |
| while True: | |
| if length % (2**num_downsamplings_in_unet) == 0: | |
| return length | |
| length += 1 | |