Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,135 +1,135 @@
|
|
| 1 |
-
|
| 2 |
-
import os
|
| 3 |
-
import json
|
| 4 |
-
import numpy as np
|
| 5 |
-
import torch
|
| 6 |
-
import soundfile as sf
|
| 7 |
-
import gradio as gr
|
| 8 |
-
from diffusers import DDPMScheduler
|
| 9 |
-
from pico_model import PicoDiffusion
|
| 10 |
-
from audioldm.variational_autoencoder.autoencoder import AutoencoderKL
|
| 11 |
-
from llm_preprocess import get_event, preprocess_gemini, preprocess_gpt
|
| 12 |
-
class dotdict(dict):
|
| 13 |
-
"""dot.notation access to dictionary attributes"""
|
| 14 |
-
__getattr__ = dict.get
|
| 15 |
-
__setattr__ = dict.__setitem__
|
| 16 |
-
__delattr__ = dict.__delitem__
|
| 17 |
-
|
| 18 |
-
class InferRunner:
|
| 19 |
-
def __init__(self, device):
|
| 20 |
-
vae_config = json.load(open("ckpts/ldm/vae_config.json"))
|
| 21 |
-
self.vae = AutoencoderKL(**vae_config).to(device)
|
| 22 |
-
vae_weights = torch.load("ckpts/ldm/pytorch_model_vae.bin", map_location=device)
|
| 23 |
-
self.vae.load_state_dict(vae_weights)
|
| 24 |
-
|
| 25 |
-
train_args = dotdict(json.loads(open("ckpts/pico_model/summary.jsonl").readlines()[0]))
|
| 26 |
-
self.pico_model = PicoDiffusion(
|
| 27 |
-
scheduler_name=train_args.scheduler_name,
|
| 28 |
-
unet_model_config_path=train_args.unet_model_config,
|
| 29 |
-
snr_gamma=train_args.snr_gamma,
|
| 30 |
-
freeze_text_encoder_ckpt="ckpts/laion_clap/630k-audioset-best.pt",
|
| 31 |
-
diffusion_pt="ckpts/pico_model/diffusion.pt",
|
| 32 |
-
).eval().to(device)
|
| 33 |
-
self.scheduler = DDPMScheduler.from_pretrained(train_args.scheduler_name, subfolder="scheduler")
|
| 34 |
-
|
| 35 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 36 |
-
runner = InferRunner(device)
|
| 37 |
-
event_list = get_event()
|
| 38 |
-
def infer(caption, num_steps=200, guidance_scale=3.0, audio_len=16000*10):
|
| 39 |
-
with torch.no_grad():
|
| 40 |
-
latents = runner.pico_model.demo_inference(caption, runner.scheduler, num_steps=num_steps, guidance_scale=guidance_scale, num_samples_per_prompt=1, disable_progress=True)
|
| 41 |
-
mel = runner.vae.decode_first_stage(latents)
|
| 42 |
-
wave = runner.vae.decode_to_waveform(mel)[0][:audio_len]
|
| 43 |
-
outpath = f"output.wav"
|
| 44 |
-
sf.write(outpath, wave, samplerate=16000, subtype='PCM_16')
|
| 45 |
-
return outpath
|
| 46 |
-
|
| 47 |
-
def preprocess(caption):
|
| 48 |
-
output = preprocess_gemini(caption)
|
| 49 |
-
return output, output
|
| 50 |
-
|
| 51 |
-
with gr.Blocks() as demo:
|
| 52 |
-
with gr.Row():
|
| 53 |
-
gr.Markdown("## PicoAudio")
|
| 54 |
-
with gr.Row():
|
| 55 |
-
description_text = f"18 events: {', '.join(event_list)}"
|
| 56 |
-
gr.Markdown(description_text)
|
| 57 |
-
|
| 58 |
-
with gr.Row():
|
| 59 |
-
gr.Markdown("## Step1")
|
| 60 |
-
with gr.Row():
|
| 61 |
-
preprocess_description_text = f"preprocess: free-text to timestamp caption via LLM"
|
| 62 |
-
gr.Markdown(preprocess_description_text)
|
| 63 |
-
with gr.Row():
|
| 64 |
-
with gr.Column():
|
| 65 |
-
freetext_prompt = gr.Textbox(label="Prompt: Input your free-text caption here. (e.g. a dog barks three times.)",
|
| 66 |
-
value="a dog barks three times.",)
|
| 67 |
-
preprocess_run_button = gr.Button()
|
| 68 |
-
prompt = None
|
| 69 |
-
with gr.Column():
|
| 70 |
-
freetext_prompt_out = gr.Textbox(label="Preprocess output")
|
| 71 |
-
with gr.Row():
|
| 72 |
-
with gr.Column():
|
| 73 |
-
gr.Examples(
|
| 74 |
-
examples = [["spraying two times then gunshot three times."],
|
| 75 |
-
["a dog barks three times."],
|
| 76 |
-
["cow mooing two times."],],
|
| 77 |
-
inputs = [freetext_prompt],
|
| 78 |
-
outputs = [prompt]
|
| 79 |
-
)
|
| 80 |
-
with gr.Column():
|
| 81 |
-
pass
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
with gr.Row():
|
| 85 |
-
gr.Markdown("## Step2")
|
| 86 |
-
with gr.Row():
|
| 87 |
-
with gr.Column():
|
| 88 |
-
prompt = gr.Textbox(label="Prompt: Input your caption formatted as 'event1 at onset1-offset1_onset2-offset2 and event2 at onset1-offset1'.",
|
| 89 |
-
value="spraying at 0.38-1.176_3.06-3.856 and gunshot at 1.729-3.729_4.367-6.367_7.031-9.031.",)
|
| 90 |
-
generate_run_button = gr.Button()
|
| 91 |
-
with gr.Accordion("Advanced options", open=False):
|
| 92 |
-
num_steps = gr.Slider(label="num_steps", minimum=1, maximum=300, value=200, step=1)
|
| 93 |
-
guidance_scale = gr.Slider(label="guidance_scale", minimum=0.1, maximum=8.0, value=3.0, step=0.1)
|
| 94 |
-
with gr.Column():
|
| 95 |
-
outaudio = gr.Audio()
|
| 96 |
-
preprocess_run_button.click(fn=preprocess_gemini, inputs=[freetext_prompt], outputs=[prompt, freetext_prompt_out])
|
| 97 |
-
generate_run_button.click(fn=infer, inputs=[prompt, num_steps, guidance_scale], outputs=[outaudio])
|
| 98 |
-
|
| 99 |
-
with gr.Row():
|
| 100 |
-
with gr.Column():
|
| 101 |
-
gr.Examples(
|
| 102 |
-
examples = [["spraying at 0.38-1.176_3.06-3.856 and gunshot at 1.729-3.729_4.367-6.367_7.031-9.031."],
|
| 103 |
-
["dog_barking at 0.562-2.562_4.25-6.25."],
|
| 104 |
-
["cow_mooing at 0.958-3.582_5.272-7.896."],],
|
| 105 |
-
inputs = [prompt, num_steps, guidance_scale],
|
| 106 |
-
outputs = [outaudio]
|
| 107 |
-
)
|
| 108 |
-
with gr.Column():
|
| 109 |
-
pass
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
demo.launch()
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
# description_text = f"18 events: {', '.join(event_list)}"
|
| 116 |
-
# prompt = gr.Textbox(label="Prompt: Input your caption formatted as 'event1 at onset1-offset1_onset2-offset2 and event2 at onset1-offset1'.",
|
| 117 |
-
# value="spraying at 0.38-1.176_3.06-3.856 and gunshot at 1.729-3.729_4.367-6.367_7.031-9.031.",)
|
| 118 |
-
# outaudio = gr.Audio()
|
| 119 |
-
# num_steps = gr.Slider(label="num_steps", minimum=1, maximum=300, value=200, step=1)
|
| 120 |
-
# guidance_scale = gr.Slider(label="guidance_scale", minimum=0.1, maximum=8.0, value=3.0, step=0.1)
|
| 121 |
-
# gr_interface = gr.Interface(
|
| 122 |
-
# fn=infer,
|
| 123 |
-
# inputs=[prompt, num_steps, guidance_scale],
|
| 124 |
-
# outputs=[outaudio],
|
| 125 |
-
# title="PicoAudio",
|
| 126 |
-
# description=description_text,
|
| 127 |
-
# allow_flagging=False,
|
| 128 |
-
# examples=[
|
| 129 |
-
# ["spraying at 0.38-1.176_3.06-3.856 and gunshot at 1.729-3.729_4.367-6.367_7.031-9.031."],
|
| 130 |
-
# ["dog_barking at 0.562-2.562_4.25-6.25."],
|
| 131 |
-
# ["cow_mooing at 0.958-3.582_5.272-7.896."],
|
| 132 |
-
# ],
|
| 133 |
-
# cache_examples="lazy", # Turn on to cache.
|
| 134 |
-
# )
|
| 135 |
# gr_interface.queue(10).launch()
|
|
|
|
| 1 |
+
|
| 2 |
+
import os
|
| 3 |
+
import json
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import soundfile as sf
|
| 7 |
+
import gradio as gr
|
| 8 |
+
from diffusers import DDPMScheduler
|
| 9 |
+
from pico_model import PicoDiffusion
|
| 10 |
+
from audioldm.variational_autoencoder.autoencoder import AutoencoderKL
|
| 11 |
+
from llm_preprocess import get_event, preprocess_gemini, preprocess_gpt
|
| 12 |
+
class dotdict(dict):
|
| 13 |
+
"""dot.notation access to dictionary attributes"""
|
| 14 |
+
__getattr__ = dict.get
|
| 15 |
+
__setattr__ = dict.__setitem__
|
| 16 |
+
__delattr__ = dict.__delitem__
|
| 17 |
+
|
| 18 |
+
class InferRunner:
|
| 19 |
+
def __init__(self, device):
|
| 20 |
+
vae_config = json.load(open("ckpts/ldm/vae_config.json"))
|
| 21 |
+
self.vae = AutoencoderKL(**vae_config).to(device)
|
| 22 |
+
vae_weights = torch.load("ckpts/ldm/pytorch_model_vae.bin", map_location=device)
|
| 23 |
+
self.vae.load_state_dict(vae_weights)
|
| 24 |
+
|
| 25 |
+
train_args = dotdict(json.loads(open("ckpts/pico_model/summary.jsonl").readlines()[0]))
|
| 26 |
+
self.pico_model = PicoDiffusion(
|
| 27 |
+
scheduler_name=train_args.scheduler_name,
|
| 28 |
+
unet_model_config_path=train_args.unet_model_config,
|
| 29 |
+
snr_gamma=train_args.snr_gamma,
|
| 30 |
+
freeze_text_encoder_ckpt="ckpts/laion_clap/630k-audioset-best.pt",
|
| 31 |
+
diffusion_pt="ckpts/pico_model/diffusion.pt",
|
| 32 |
+
).eval().to(device)
|
| 33 |
+
self.scheduler = DDPMScheduler.from_pretrained(train_args.scheduler_name, subfolder="scheduler")
|
| 34 |
+
|
| 35 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 36 |
+
runner = InferRunner(device)
|
| 37 |
+
event_list = get_event()
|
| 38 |
+
def infer(caption, num_steps=200, guidance_scale=3.0, audio_len=16000*10):
|
| 39 |
+
with torch.no_grad():
|
| 40 |
+
latents = runner.pico_model.demo_inference(caption, runner.scheduler, num_steps=num_steps, guidance_scale=guidance_scale, num_samples_per_prompt=1, disable_progress=True)
|
| 41 |
+
mel = runner.vae.decode_first_stage(latents)
|
| 42 |
+
wave = runner.vae.decode_to_waveform(mel)[0][:audio_len]
|
| 43 |
+
outpath = f"output.wav"
|
| 44 |
+
sf.write(outpath, wave, samplerate=16000, subtype='PCM_16')
|
| 45 |
+
return outpath
|
| 46 |
+
|
| 47 |
+
def preprocess(caption):
|
| 48 |
+
output = preprocess_gemini(caption)
|
| 49 |
+
return output, output
|
| 50 |
+
|
| 51 |
+
with gr.Blocks() as demo:
|
| 52 |
+
with gr.Row():
|
| 53 |
+
gr.Markdown("## PicoAudio")
|
| 54 |
+
with gr.Row():
|
| 55 |
+
description_text = f"18 events: {', '.join(event_list)}"
|
| 56 |
+
gr.Markdown(description_text)
|
| 57 |
+
|
| 58 |
+
with gr.Row():
|
| 59 |
+
gr.Markdown("## Step1")
|
| 60 |
+
with gr.Row():
|
| 61 |
+
preprocess_description_text = f"preprocess: free-text to timestamp caption via LLM"
|
| 62 |
+
gr.Markdown(preprocess_description_text)
|
| 63 |
+
with gr.Row():
|
| 64 |
+
with gr.Column():
|
| 65 |
+
freetext_prompt = gr.Textbox(label="Prompt: Input your free-text caption here. (e.g. a dog barks three times.)",
|
| 66 |
+
value="a dog barks three times.",)
|
| 67 |
+
preprocess_run_button = gr.Button()
|
| 68 |
+
prompt = None
|
| 69 |
+
with gr.Column():
|
| 70 |
+
freetext_prompt_out = gr.Textbox(label="Preprocess output")
|
| 71 |
+
with gr.Row():
|
| 72 |
+
with gr.Column():
|
| 73 |
+
gr.Examples(
|
| 74 |
+
examples = [["spraying two times then gunshot three times."],
|
| 75 |
+
["a dog barks three times."],
|
| 76 |
+
["cow mooing two times."],],
|
| 77 |
+
inputs = [freetext_prompt],
|
| 78 |
+
outputs = [prompt]
|
| 79 |
+
)
|
| 80 |
+
with gr.Column():
|
| 81 |
+
pass
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
with gr.Row():
|
| 85 |
+
gr.Markdown("## Step2")
|
| 86 |
+
with gr.Row():
|
| 87 |
+
with gr.Column():
|
| 88 |
+
prompt = gr.Textbox(label="Prompt: Input your caption formatted as 'event1 at onset1-offset1_onset2-offset2 and event2 at onset1-offset1'.",
|
| 89 |
+
value="spraying at 0.38-1.176_3.06-3.856 and gunshot at 1.729-3.729_4.367-6.367_7.031-9.031.",)
|
| 90 |
+
generate_run_button = gr.Button()
|
| 91 |
+
with gr.Accordion("Advanced options", open=False):
|
| 92 |
+
num_steps = gr.Slider(label="num_steps", minimum=1, maximum=300, value=200, step=1)
|
| 93 |
+
guidance_scale = gr.Slider(label="guidance_scale", minimum=0.1, maximum=8.0, value=3.0, step=0.1)
|
| 94 |
+
with gr.Column():
|
| 95 |
+
outaudio = gr.Audio()
|
| 96 |
+
preprocess_run_button.click(fn=preprocess_gemini, inputs=[freetext_prompt], outputs=[prompt, freetext_prompt_out])
|
| 97 |
+
generate_run_button.click(fn=infer, inputs=[prompt, num_steps, guidance_scale], outputs=[outaudio])
|
| 98 |
+
|
| 99 |
+
with gr.Row():
|
| 100 |
+
with gr.Column():
|
| 101 |
+
gr.Examples(
|
| 102 |
+
examples = [["spraying at 0.38-1.176_3.06-3.856 and gunshot at 1.729-3.729_4.367-6.367_7.031-9.031."],
|
| 103 |
+
["dog_barking at 0.562-2.562_4.25-6.25."],
|
| 104 |
+
["cow_mooing at 0.958-3.582_5.272-7.896."],],
|
| 105 |
+
inputs = [prompt, num_steps, guidance_scale],
|
| 106 |
+
outputs = [outaudio]
|
| 107 |
+
)
|
| 108 |
+
with gr.Column():
|
| 109 |
+
pass
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
demo.launch()
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
# description_text = f"18 events: {', '.join(event_list)}"
|
| 116 |
+
# prompt = gr.Textbox(label="Prompt: Input your caption formatted as 'event1 at onset1-offset1_onset2-offset2 and event2 at onset1-offset1'.",
|
| 117 |
+
# value="spraying at 0.38-1.176_3.06-3.856 and gunshot at 1.729-3.729_4.367-6.367_7.031-9.031.",)
|
| 118 |
+
# outaudio = gr.Audio()
|
| 119 |
+
# num_steps = gr.Slider(label="num_steps", minimum=1, maximum=300, value=200, step=1)
|
| 120 |
+
# guidance_scale = gr.Slider(label="guidance_scale", minimum=0.1, maximum=8.0, value=3.0, step=0.1)
|
| 121 |
+
# gr_interface = gr.Interface(
|
| 122 |
+
# fn=infer,
|
| 123 |
+
# inputs=[prompt, num_steps, guidance_scale],
|
| 124 |
+
# outputs=[outaudio],
|
| 125 |
+
# title="PicoAudio",
|
| 126 |
+
# description=description_text,
|
| 127 |
+
# allow_flagging=False,
|
| 128 |
+
# examples=[
|
| 129 |
+
# ["spraying at 0.38-1.176_3.06-3.856 and gunshot at 1.729-3.729_4.367-6.367_7.031-9.031."],
|
| 130 |
+
# ["dog_barking at 0.562-2.562_4.25-6.25."],
|
| 131 |
+
# ["cow_mooing at 0.958-3.582_5.272-7.896."],
|
| 132 |
+
# ],
|
| 133 |
+
# cache_examples="lazy", # Turn on to cache.
|
| 134 |
+
# )
|
| 135 |
# gr_interface.queue(10).launch()
|