Spaces:
Runtime error
Runtime error
| import os | |
| import json | |
| import numpy as np | |
| import torch | |
| import soundfile as sf | |
| from diffusers import DDPMScheduler | |
| from pico_model import PicoDiffusion, build_pretrained_models | |
| class dotdict(dict): | |
| """dot.notation access to dictionary attributes""" | |
| __getattr__ = dict.get | |
| __setattr__ = dict.__setitem__ | |
| __delattr__ = dict.__delitem__ | |
| class InferRunner: | |
| def __init__(self): | |
| self.vae, _ = build_pretrained_models("audioldm-s-full") | |
| train_args = dotdict(json.loads(open("ckpts/pico_model/summary.jsonl").readlines()[0])) | |
| self.pico_model = PicoDiffusion( | |
| scheduler_name=train_args.scheduler_name, | |
| unet_model_config_path=train_args.unet_model_config, | |
| snr_gamma=train_args.snr_gamma, | |
| freeze_text_encoder_ckpt="ckpts/laion_clap/630k-audioset-best.pt", | |
| diffusion_pt="ckpts/pico_model/diffusion.pt", | |
| ).cuda().eval() | |
| self.scheduler = DDPMScheduler.from_pretrained(train_args.scheduler_name, subfolder="scheduler") | |
| def infer(caption, runner): | |
| with torch.no_grad(): | |
| latents = runner.picomodel.demo_inference(caption, runner.scheduler, num_steps=200, guidance=3.0, num_samples=1, audio_len=16000*10, disable_progress=True) | |
| mel = runner.vae.decode_first_stage(latents) | |
| wave = runner.vae.decode_to_waveform(mel)[0][:audio_len] | |
| sf.write(f"synthesized/{caption}.wav", wave, samplerate=16000, subtype='PCM_16') | |
| infer_runner = InferRunner() | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| gr.Markdown("## PicoAudio") | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Textbox(label="Prompt: Input your caption formatted as 'event1 at onset1-offset1_onset2-offset2 and event2 at onset1-offset1.", | |
| value="spraying at 0.38-1.176_3.06-3.856 and gunshot at 1.729-3.729_4.367-6.367_7.031-9.031.") | |
| run_button = gr.Button() | |
| with gr.Accordion("Advanced options", open=False): | |
| num_steps = gr.Slider(label="num_steps", minimum=1, | |
| maximum=300, value=200, step=1) | |
| guidance = gr.Slider( | |
| label="Guidance Scale:(Large => more relevant to text but the quality may drop)", minimum=0.1, maximum=8.0, value=3.0, step=0.1 | |
| ) | |
| with gr.Column(): | |
| outaudio = gr.Audio() | |
| run_button.click(fn=infer, inputs=[ | |
| prompt, num_steps, guidance], outputs=[outaudio]) | |
| # with gr.Row(): | |
| # with gr.Column(): | |
| # gr.Examples( | |
| # examples = [['An amateur recording features a steel drum playing in a higher register',25,5,55], | |
| # ['An instrumental song with a caribbean feel, happy mood, and featuring steel pan music, programmed percussion, and bass',25,5,55], | |
| # ['This musical piece features a playful and emotionally melodic male vocal accompanied by piano',25,5,55], | |
| # ['A eerie yet calming experimental electronic track featuring haunting synthesizer strings and pads',25,5,55], | |
| # ['A slow tempo pop instrumental piece featuring only acoustic guitar with fingerstyle and percussive strumming techniques',25,5,55]], | |
| # inputs = [prompt, ddim_steps, scale, seed], | |
| # outputs = [outaudio] | |
| # ) | |
| # with gr.Column(): | |
| # pass | |
| demo.launch() | |
| if __name__ == "__main__": | |
| main() |