Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import cv2 | |
| import numpy as np | |
| from PIL import Image | |
| from transparent_background import Remover | |
| # Load model | |
| remover = Remover() # default setting | |
| remover = Remover(mode='fast', jit=True, device='cuda:0', ckpt='~/latest.pth') # custom setting | |
| remover = Remover(mode='base-nightly') # nightly release checkpoint | |
| # Usage for image | |
| def doo(image): | |
| return "Hello " + name + "!!" | |
| img = Image.fromarray(image).convert('RGB') # read image | |
| out = remover.process(img) # default setting - transparent background | |
| out = remover.process(img, type='rgba') # same as above | |
| out = remover.process(img, type='map') # object map only | |
| out = remover.process(img, type='green') # image matting - green screen | |
| out = remover.process(img, type='white') # change backround with white color | |
| out = remover.process(img, type=[255, 0, 0]) # change background with color code [255, 0, 0] | |
| out = remover.process(img, type='blur') # blur background | |
| out = remover.process(img, type='overlay') # overlay object map onto the image | |
| out = remover.process(img, type='samples/background.jpg') # use another image as a background | |
| out = remover.process(img, threshold=0.5) # use threhold parameter for hard prediction. | |
| out.save('output.png') # save result | |
| iface = gr.Interface(fn=doo, inputs="image", outputs="image") | |
| iface.launch() |