Spaces:
Runtime error
Runtime error
| from dataclasses import dataclass, field | |
| import logging | |
| from flask import Flask, request, jsonify | |
| import transformers | |
| import torch | |
| from datasets import load_from_disk | |
| from sonicverse.model_utils import MultiTaskType | |
| from sonicverse.training import ModelArguments | |
| from sonicverse.inference import load_trained_lora_model | |
| from sonicverse.data_tools import encode_chat | |
| import evaluate | |
| import random | |
| import bert_score | |
| import os | |
| os.environ['HF_EVALUATE_OFFLINE'] = '1' | |
| PRETRAIN_PHRASES = ["Describe the audio in detail <sound>"] | |
| PRETRAIN_PHRASES_old = [ | |
| "What is happening in the given music <sound>?", | |
| "Describe the sound. <sound>", | |
| "Describe the music. <sound>", | |
| "<sound> Provide a description of the music.", | |
| "<sound> Provide a description of the sound.", | |
| "Can you interpret <sound>?", | |
| "Please explain what's happening in <sound>", | |
| "What does <sound> represent?", | |
| "Could you describe <sound> for me?", | |
| "What's the content of <sound>?", | |
| "Can you depict <sound>?", | |
| "What is <sound>?", | |
| "In the music clip, <sound>, what is happening?", | |
| "Provide a description of the music. <sound>", | |
| "Provide a description of the sound. <sound>", | |
| "Provide a caption for the sound. <sound>", | |
| "Provide a caption for the music. <sound>", | |
| ] | |
| class ServeArguments(ModelArguments): | |
| port: int = field(default=8080) | |
| host: str = field(default="0.0.0.0") | |
| load_bits: int = field(default=16) | |
| max_new_tokens: int = field(default=128) | |
| temperature: float = field(default=0.01) | |
| def generate(input_json): | |
| encoded_dict = encode_chat(input_json, tokenizer, model.modalities) | |
| with torch.inference_mode(): | |
| output_ids = model.generate( | |
| input_ids=encoded_dict["input_ids"].unsqueeze(0).to(model.device), | |
| max_new_tokens=serve_args.max_new_tokens, | |
| use_cache=True, | |
| do_sample=True, | |
| temperature=serve_args.temperature, | |
| modality_inputs={ | |
| m.name: [encoded_dict[m.name]] for m in model.modalities | |
| }, | |
| ) | |
| outputs = tokenizer.decode( | |
| output_ids[0, encoded_dict["input_ids"].shape[0]:], | |
| skip_special_tokens=True, | |
| ).strip() | |
| return {"output": outputs} | |
| if __name__ == "__main__": | |
| logging.getLogger().setLevel(logging.INFO) | |
| parser = transformers.HfArgumentParser((ServeArguments,)) | |
| serve_args, _ = parser.parse_args_into_dataclasses(return_remaining_strings=True) | |
| dataset_path = "/data/musicbench_multitoken_official_split/val" | |
| ds = load_from_disk(dataset_path) | |
| model, tokenizer = load_trained_lora_model( | |
| model_name_or_path=serve_args.model_name_or_path, | |
| model_lora_path=serve_args.model_lora_path, | |
| load_bits=serve_args.load_bits, | |
| use_multi_task=MultiTaskType(serve_args.use_multi_task), | |
| tasks_config=serve_args.tasks_config | |
| ) | |
| predictions = [] | |
| references = [] | |
| content_phrase = random.choice(PRETRAIN_PHRASES) | |
| for data_point_id in range(10): | |
| data_point = ds[data_point_id] | |
| input_json = {"messages": [{"role": "user", "content": content_phrase}], "sounds": data_point["sounds"]} | |
| output_json = generate(input_json) | |
| print("Prediction ", output_json["output"]) | |
| print("Reference ", data_point["messages"][1]["content"]) | |
| print() | |
| print() | |
| predictions.append(output_json["output"]) | |
| references.append(data_point["messages"][1]["content"]) | |
| # Load evaluation metrics | |
| bleu = evaluate.load("bleu") | |
| meteor = evaluate.load("meteor") | |
| rouge = evaluate.load("rouge") | |
| # Compute BLEU scores | |
| bleu_results = bleu.compute(predictions=predictions, references=references, max_order=4) | |
| print(bleu_results) | |
| #bleu_score = sum(bleu_results[f"bleu{i}"] for i in range(1, 5)) / 4 | |
| # Compute METEOR score | |
| meteor_results = meteor.compute(predictions=predictions, references=references) | |
| meteor_score = meteor_results["meteor"] | |
| # Compute ROUGE-L score | |
| rouge_results = rouge.compute(predictions=predictions, references=references, rouge_types=["rougeL"]) | |
| # rouge_l_score = rouge_results["rougeL"].mid.fmeasure | |
| print(rouge_results) | |
| # Compute BERT-Score | |
| P, R, F1 = bert_score.score(predictions, references, lang="en", rescale_with_baseline=True) | |
| bert_score_f1 = F1.mean().item() | |
| # Print results | |
| #print(f"BLEU Score: {bleu_score}") | |
| print(f"METEOR Score: {meteor_score}") | |
| # print(f"ROUGE-L Score: {rouge_l_score}") | |
| print(f"BERT-Score F1: {bert_score_f1}") | |