File size: 7,992 Bytes
5f61a8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os
import sys
import subprocess
from pathlib import Path
from typing import Tuple, Optional

import gradio as gr
import numpy as np
import soundfile as sf
from huggingface_hub import hf_hub_download

SPACE_ROOT = Path(__file__).parent.resolve()
REPO_DIR   = SPACE_ROOT / "SonicMasterRepo"
WEIGHTS_REPO = "amaai-lab/SonicMaster"
WEIGHTS_FILE = "model.safetensors"   # from the HF model repo
CACHE_DIR = SPACE_ROOT / "weights"
CACHE_DIR.mkdir(parents=True, exist_ok=True)

# ---------- 1) Pull weights from HF Hub ----------
def get_weights_path() -> Path:
    weights_path = hf_hub_download(
        repo_id=WEIGHTS_REPO,
        filename=WEIGHTS_FILE,
        local_dir=CACHE_DIR.as_posix(),
        local_dir_use_symlinks=False,
        force_download=False,
        resume_download=True,
    )
    return Path(weights_path)

# ---------- 2) Clone GitHub repo for code (model.py / inference_*.py ) ----------
def ensure_repo() -> Path:
    if not REPO_DIR.exists():
        subprocess.run(
            ["git", "clone", "--depth", "1", "https://github.com/AMAAI-Lab/SonicMaster", REPO_DIR.as_posix()],
            check=True,
        )
    if REPO_DIR.as_posix() not in sys.path:
        sys.path.append(REPO_DIR.as_posix())
    return REPO_DIR

# ---------- 3) Examples: use only *.wav from samples/inputs ----------
def build_examples():
    """
    Discover up to 10 .wav files from:
        SonicMasterRepo/samples/inputs
    and pair them with prompts for gr.Examples.
    """
    repo = ensure_repo()
    wav_dir = repo / "samples" / "inputs"
    wav_paths = sorted(p for p in wav_dir.glob("*.wav") if p.is_file())

    prompts = [
        "Increase the clarity of this song by emphasizing treble frequencies.",
        "Make this song sound more boomy by amplifying the low end bass frequencies.",
        "Can you make this sound louder, please?",
        "Make the audio smoother and less distorted.",
        "Improve the balance in this song.",
        "Disentangle the left and right channels to give this song a stereo feeling.",
        "Correct the unnatural frequency emphasis. Reduce the roominess or echo.",
        "Raise the level of the vocals, please.",
        "Increase the clarity of this song by emphasizing treble frequencies.",
        "Please, dereverb this audio.",
    ]

    examples = []
    for i, p in enumerate(wav_paths[:10]):
        prompt = prompts[i] if i < len(prompts) else prompts[-1]
        examples.append([p.as_posix(), prompt])

    # Fallback: if no wavs found, provide an empty list (Gradio handles it)
    return examples

# ---------- 4) I/O helpers ----------
def save_temp_wav(wav: np.ndarray, sr: int, path: Path):
    # Ensure (samples, channels) for soundfile
    if wav.ndim == 2 and wav.shape[0] < wav.shape[1]:
        # (channels, samples) -> (samples, channels)
        data = wav.T
    else:
        data = wav
    sf.write(path.as_posix(), data, sr)

def read_audio(path: str) -> Tuple[np.ndarray, int]:
    wav, sr = sf.read(path, always_2d=False)
    if wav.dtype == np.float64:
        wav = wav.astype(np.float32)
    return wav, sr

def run_sonicmaster_cli(
    input_wav_path: Path,
    prompt: str,
    out_path: Path,
    _logs: list,  # kept for compatibility, but not shown in UI
    progress: Optional[gr.Progress] = None
) -> bool:
    """
    Uses the current Python interpreter and tries a few script names/flags.
    """
    import sys, shutil

    if progress: progress(0.15, desc="Loading weights & repo")
    ckpt = get_weights_path()
    repo = ensure_repo()

    # Use the exact Python interpreter running this process
    py = sys.executable or shutil.which("python3") or shutil.which("python") or "python3"

    # Prefer the scripts we know accept --ckpt/--input/--prompt/--output
    script_candidates = [
        repo / "infer_single.py",         # if you kept your own name
    ]

    CANDIDATE_CMDS = []
    for script in script_candidates:
        if script.exists():
            CANDIDATE_CMDS.append([
                py, script.as_posix(),
                "--ckpt", ckpt.as_posix(),
                "--input", input_wav_path.as_posix(),
                "--prompt", prompt,
                "--output", out_path.as_posix(),
            ])

    # As a last resort, try alternative flag names (if someone changed the CLI)
    for script in script_candidates:
        if script.exists():
            CANDIDATE_CMDS.append([
                py, script.as_posix(),
                "--weights", ckpt.as_posix(),
                "--input", input_wav_path.as_posix(),
                "--text", prompt,
                "--out", out_path.as_posix(),
            ])

    if not CANDIDATE_CMDS:
        return False

    for idx, cmd in enumerate(CANDIDATE_CMDS, start=1):
        try:
            if progress: progress(0.35 + 0.05*idx, desc=f"Running inference (try {idx})")
            res = subprocess.run(cmd, capture_output=True, text=True, check=True)
            if out_path.exists() and out_path.stat().st_size > 0:
                if progress: progress(0.9, desc="Post-processing output")
                return True
        except subprocess.CalledProcessError:
            continue
        except Exception:
            continue
    return False


def enhance_audio_ui(
    audio_path: str,
    prompt: str,
    progress=gr.Progress(track_tqdm=True)
) -> Tuple[int, np.ndarray]:
    """
    Gradio callback: accepts a file path, a prompt, and returns enhanced audio.
    """
    if progress: progress(0.0, desc="Validating input")
    if not audio_path or not prompt:
        raise gr.Error("Please provide audio and a text prompt.")

    # Standardize input -> temp wav
    wav, sr = read_audio(audio_path)
    if progress: progress(0.15, desc="Preparing audio")
    tmp_in = SPACE_ROOT / "tmp_in.wav"
    tmp_out = SPACE_ROOT / "tmp_out.wav"
    if tmp_out.exists():
        try:
            tmp_out.unlink()
        except Exception:
            pass

    save_temp_wav(wav, sr, tmp_in)

    # Run model
    if progress: progress(0.3, desc="Starting inference")
    ok = run_sonicmaster_cli(tmp_in, prompt, tmp_out, _logs=[], progress=progress)

    # Return output (or echo input)
    if ok and tmp_out.exists() and tmp_out.stat().st_size > 0:
        out_wav, out_sr = read_audio(tmp_out.as_posix())
        if progress: progress(1.0, desc="Done")
        return (out_sr, out_wav)
    else:
        if progress: progress(1.0, desc="No output produced")
        # Return original audio if model didn't produce output
        return (sr, wav)

# ---------- 6) Gradio UI ----------
with gr.Blocks(title="SonicMaster – Text-Guided Restoration & Mastering", fill_height=True) as demo:
    gr.Markdown("## 🎧 SonicMaster\nUpload or choose an example (from repo: `samples/inputs/*.wav`), write a text prompt (e.g., *reduce reverb*, *clean distortion*), then click **Enhance**.")
    with gr.Row():
        with gr.Column(scale=1):
            in_audio = gr.Audio(label="Input Audio (upload or use examples)", type="filepath")
            prompt = gr.Textbox(label="Text Prompt", placeholder="e.g., reduce reverb and enhance clarity")
            run_btn = gr.Button("πŸš€ Enhance", variant="primary")

            # Use wavs from SonicMasterRepo/samples/inputs
            gr.Examples(
                examples=build_examples(),
                inputs=[in_audio, prompt],
                label="Examples (repo: samples/inputs/*.wav)"
            )
        with gr.Column(scale=1):
            out_audio = gr.Audio(label="Enhanced Audio (output)")

    # Per-event concurrency (use 1 unless you know your VRAM/CPU can handle more)
    run_btn.click(
        fn=enhance_audio_ui,
        inputs=[in_audio, prompt],
        outputs=[out_audio],
        concurrency_limit=1,
    )

# Warm up cache & repo, then launch
_ = get_weights_path()
_ = ensure_repo()
demo.queue(max_size=16).launch()
# Or, a global default for all events:
# demo.queue(max_size=16, default_concurrency_limit=1).launch()