Spaces:
Sleeping
Sleeping
| from data_provider.data_factory import data_provider | |
| from data_provider.m4 import M4Meta | |
| from exp.exp_basic import Exp_Basic | |
| from utils.tools import EarlyStopping, adjust_learning_rate, visual | |
| from utils.losses import mape_loss, mase_loss, smape_loss | |
| from utils.m4_summary import M4Summary | |
| import torch | |
| import torch.nn as nn | |
| from torch import optim | |
| import os | |
| import time | |
| import warnings | |
| import numpy as np | |
| import pandas | |
| warnings.filterwarnings('ignore') | |
| class Exp_Short_Term_Forecast(Exp_Basic): | |
| def __init__(self, args): | |
| super(Exp_Short_Term_Forecast, self).__init__(args) | |
| def _build_model(self): | |
| if self.args.data == 'm4': | |
| self.args.pred_len = M4Meta.horizons_map[self.args.seasonal_patterns] # Up to M4 config | |
| self.args.seq_len = 2 * self.args.pred_len # input_len = 2*pred_len | |
| self.args.label_len = self.args.pred_len | |
| self.args.frequency_map = M4Meta.frequency_map[self.args.seasonal_patterns] | |
| model = self.model_dict[self.args.model].Model(self.args).float() | |
| if self.args.use_multi_gpu and self.args.use_gpu: | |
| model = nn.DataParallel(model, device_ids=self.args.device_ids) | |
| return model | |
| def _get_data(self, flag): | |
| data_set, data_loader = data_provider(self.args, flag) | |
| return data_set, data_loader | |
| def _select_optimizer(self): | |
| model_optim = optim.Adam(self.model.parameters(), lr=self.args.learning_rate) | |
| return model_optim | |
| def _select_criterion(self, loss_name='MSE'): | |
| if loss_name == 'MSE': | |
| return nn.MSELoss() | |
| elif loss_name == 'MAPE': | |
| return mape_loss() | |
| elif loss_name == 'MASE': | |
| return mase_loss() | |
| elif loss_name == 'SMAPE': | |
| return smape_loss() | |
| def train(self, setting): | |
| train_data, train_loader = self._get_data(flag='train') | |
| vali_data, vali_loader = self._get_data(flag='val') | |
| path = os.path.join(self.args.checkpoints, setting) | |
| if not os.path.exists(path): | |
| os.makedirs(path) | |
| time_now = time.time() | |
| train_steps = len(train_loader) | |
| early_stopping = EarlyStopping(patience=self.args.patience, verbose=True) | |
| model_optim = self._select_optimizer() | |
| criterion = self._select_criterion(self.args.loss) | |
| mse = nn.MSELoss() | |
| for epoch in range(self.args.train_epochs): | |
| iter_count = 0 | |
| train_loss = [] | |
| self.model.train() | |
| epoch_time = time.time() | |
| for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(train_loader): | |
| iter_count += 1 | |
| model_optim.zero_grad() | |
| batch_x = batch_x.float().to(self.device) | |
| batch_y = batch_y.float().to(self.device) | |
| batch_y_mark = batch_y_mark.float().to(self.device) | |
| # decoder input | |
| dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float() | |
| dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device) | |
| outputs = self.model(batch_x, None, dec_inp, None) | |
| f_dim = -1 if self.args.features == 'MS' else 0 | |
| outputs = outputs[:, -self.args.pred_len:, f_dim:] | |
| batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device) | |
| batch_y_mark = batch_y_mark[:, -self.args.pred_len:, f_dim:].to(self.device) | |
| loss_value = criterion(batch_x, self.args.frequency_map, outputs, batch_y, batch_y_mark) | |
| loss_sharpness = mse((outputs[:, 1:, :] - outputs[:, :-1, :]), (batch_y[:, 1:, :] - batch_y[:, :-1, :])) | |
| loss = loss_value # + loss_sharpness * 1e-5 | |
| train_loss.append(loss.item()) | |
| if (i + 1) % 100 == 0: | |
| print("\titers: {0}, epoch: {1} | loss: {2:.7f}".format(i + 1, epoch + 1, loss.item())) | |
| speed = (time.time() - time_now) / iter_count | |
| left_time = speed * ((self.args.train_epochs - epoch) * train_steps - i) | |
| print('\tspeed: {:.4f}s/iter; left time: {:.4f}s'.format(speed, left_time)) | |
| iter_count = 0 | |
| time_now = time.time() | |
| loss.backward() | |
| model_optim.step() | |
| print("Epoch: {} cost time: {}".format(epoch + 1, time.time() - epoch_time)) | |
| train_loss = np.average(train_loss) | |
| vali_loss = self.vali(train_loader, vali_loader, criterion) | |
| test_loss = vali_loss | |
| print("Epoch: {0}, Steps: {1} | Train Loss: {2:.7f} Vali Loss: {3:.7f} Test Loss: {4:.7f}".format( | |
| epoch + 1, train_steps, train_loss, vali_loss, test_loss)) | |
| early_stopping(vali_loss, self.model, path) | |
| if early_stopping.early_stop: | |
| print("Early stopping") | |
| break | |
| adjust_learning_rate(model_optim, epoch + 1, self.args) | |
| best_model_path = path + '/' + 'checkpoint.pth' | |
| self.model.load_state_dict(torch.load(best_model_path)) | |
| return self.model | |
| def vali(self, train_loader, vali_loader, criterion): | |
| x, _ = train_loader.dataset.last_insample_window() | |
| y = vali_loader.dataset.timeseries | |
| x = torch.tensor(x, dtype=torch.float32).to(self.device) | |
| x = x.unsqueeze(-1) | |
| self.model.eval() | |
| with torch.no_grad(): | |
| # decoder input | |
| B, _, C = x.shape | |
| dec_inp = torch.zeros((B, self.args.pred_len, C)).float().to(self.device) | |
| dec_inp = torch.cat([x[:, -self.args.label_len:, :], dec_inp], dim=1).float() | |
| # encoder - decoder | |
| outputs = torch.zeros((B, self.args.pred_len, C)).float() # .to(self.device) | |
| id_list = np.arange(0, B, 500) # validation set size | |
| id_list = np.append(id_list, B) | |
| for i in range(len(id_list) - 1): | |
| outputs[id_list[i]:id_list[i + 1], :, :] = self.model(x[id_list[i]:id_list[i + 1]], None, | |
| dec_inp[id_list[i]:id_list[i + 1]], | |
| None).detach().cpu() | |
| f_dim = -1 if self.args.features == 'MS' else 0 | |
| outputs = outputs[:, -self.args.pred_len:, f_dim:] | |
| pred = outputs | |
| true = torch.from_numpy(np.array(y)) | |
| batch_y_mark = torch.ones(true.shape) | |
| loss = criterion(x.detach().cpu()[:, :, 0], self.args.frequency_map, pred[:, :, 0], true, batch_y_mark) | |
| self.model.train() | |
| return loss | |
| def test(self, setting, test=0): | |
| _, train_loader = self._get_data(flag='train') | |
| _, test_loader = self._get_data(flag='test') | |
| x, _ = train_loader.dataset.last_insample_window() | |
| y = test_loader.dataset.timeseries | |
| x = torch.tensor(x, dtype=torch.float32).to(self.device) | |
| x = x.unsqueeze(-1) | |
| if test: | |
| print('loading model') | |
| self.model.load_state_dict(torch.load(os.path.join('./checkpoints/' + setting, 'checkpoint.pth'))) | |
| folder_path = './test_results/' + setting + '/' | |
| if not os.path.exists(folder_path): | |
| os.makedirs(folder_path) | |
| self.model.eval() | |
| with torch.no_grad(): | |
| B, _, C = x.shape | |
| dec_inp = torch.zeros((B, self.args.pred_len, C)).float().to(self.device) | |
| dec_inp = torch.cat([x[:, -self.args.label_len:, :], dec_inp], dim=1).float() | |
| # encoder - decoder | |
| outputs = torch.zeros((B, self.args.pred_len, C)).float().to(self.device) | |
| id_list = np.arange(0, B, 1) | |
| id_list = np.append(id_list, B) | |
| for i in range(len(id_list) - 1): | |
| outputs[id_list[i]:id_list[i + 1], :, :] = self.model(x[id_list[i]:id_list[i + 1]], None, | |
| dec_inp[id_list[i]:id_list[i + 1]], None) | |
| if id_list[i] % 1000 == 0: | |
| print(id_list[i]) | |
| f_dim = -1 if self.args.features == 'MS' else 0 | |
| outputs = outputs[:, -self.args.pred_len:, f_dim:] | |
| outputs = outputs.detach().cpu().numpy() | |
| preds = outputs | |
| trues = y | |
| x = x.detach().cpu().numpy() | |
| for i in range(0, preds.shape[0], preds.shape[0] // 10): | |
| gt = np.concatenate((x[i, :, 0], trues[i]), axis=0) | |
| pd = np.concatenate((x[i, :, 0], preds[i, :, 0]), axis=0) | |
| visual(gt, pd, os.path.join(folder_path, str(i) + '.pdf')) | |
| print('test shape:', preds.shape) | |
| # result save | |
| folder_path = './m4_results/' + self.args.model + '/' | |
| if not os.path.exists(folder_path): | |
| os.makedirs(folder_path) | |
| forecasts_df = pandas.DataFrame(preds[:, :, 0], columns=[f'V{i + 1}' for i in range(self.args.pred_len)]) | |
| forecasts_df.index = test_loader.dataset.ids[:preds.shape[0]] | |
| forecasts_df.index.name = 'id' | |
| forecasts_df.set_index(forecasts_df.columns[0], inplace=True) | |
| forecasts_df.to_csv(folder_path + self.args.seasonal_patterns + '_forecast.csv') | |
| print(self.args.model) | |
| file_path = './m4_results/' + self.args.model + '/' | |
| if 'Weekly_forecast.csv' in os.listdir(file_path) \ | |
| and 'Monthly_forecast.csv' in os.listdir(file_path) \ | |
| and 'Yearly_forecast.csv' in os.listdir(file_path) \ | |
| and 'Daily_forecast.csv' in os.listdir(file_path) \ | |
| and 'Hourly_forecast.csv' in os.listdir(file_path) \ | |
| and 'Quarterly_forecast.csv' in os.listdir(file_path): | |
| m4_summary = M4Summary(file_path, self.args.root_path) | |
| # m4_forecast.set_index(m4_winner_forecast.columns[0], inplace=True) | |
| smape_results, owa_results, mape, mase = m4_summary.evaluate() | |
| print('smape:', smape_results) | |
| print('mape:', mape) | |
| print('mase:', mase) | |
| print('owa:', owa_results) | |
| else: | |
| print('After all 6 tasks are finished, you can calculate the averaged index') | |
| return | |