Spaces:
Sleeping
Sleeping
| from data_provider.data_factory import data_provider | |
| from exp.exp_basic import Exp_Basic | |
| from utils.tools import EarlyStopping, adjust_learning_rate, cal_accuracy | |
| import torch | |
| import torch.nn as nn | |
| from torch import optim | |
| import os | |
| import time | |
| import warnings | |
| import numpy as np | |
| import pdb | |
| warnings.filterwarnings('ignore') | |
| class Exp_Classification(Exp_Basic): | |
| def __init__(self, args): | |
| super(Exp_Classification, self).__init__(args) | |
| def _build_model(self): | |
| # model input depends on data | |
| train_data, train_loader = self._get_data(flag='TRAIN') | |
| test_data, test_loader = self._get_data(flag='TEST') | |
| self.args.seq_len = max(train_data.max_seq_len, test_data.max_seq_len) | |
| self.args.pred_len = 0 | |
| self.args.enc_in = train_data.feature_df.shape[1] | |
| self.args.num_class = len(train_data.class_names) | |
| # model init | |
| model = self.model_dict[self.args.model].Model(self.args).float() | |
| if self.args.use_multi_gpu and self.args.use_gpu: | |
| model = nn.DataParallel(model, device_ids=self.args.device_ids) | |
| return model | |
| def _get_data(self, flag): | |
| data_set, data_loader = data_provider(self.args, flag) | |
| return data_set, data_loader | |
| def _select_optimizer(self): | |
| model_optim = optim.Adam(self.model.parameters(), lr=self.args.learning_rate) | |
| return model_optim | |
| def _select_criterion(self): | |
| criterion = nn.CrossEntropyLoss() | |
| return criterion | |
| def vali(self, vali_data, vali_loader, criterion): | |
| total_loss = [] | |
| preds = [] | |
| trues = [] | |
| self.model.eval() | |
| with torch.no_grad(): | |
| for i, (batch_x, label, padding_mask) in enumerate(vali_loader): | |
| batch_x = batch_x.float().to(self.device) | |
| padding_mask = padding_mask.float().to(self.device) | |
| label = label.to(self.device) | |
| outputs = self.model(batch_x, padding_mask, None, None) | |
| pred = outputs.detach().cpu() | |
| loss = criterion(pred, label.long().squeeze().cpu()) | |
| total_loss.append(loss) | |
| preds.append(outputs.detach()) | |
| trues.append(label) | |
| total_loss = np.average(total_loss) | |
| preds = torch.cat(preds, 0) | |
| trues = torch.cat(trues, 0) | |
| probs = torch.nn.functional.softmax(preds) # (total_samples, num_classes) est. prob. for each class and sample | |
| predictions = torch.argmax(probs, dim=1).cpu().numpy() # (total_samples,) int class index for each sample | |
| trues = trues.flatten().cpu().numpy() | |
| accuracy = cal_accuracy(predictions, trues) | |
| self.model.train() | |
| return total_loss, accuracy | |
| def train(self, setting): | |
| train_data, train_loader = self._get_data(flag='TRAIN') | |
| vali_data, vali_loader = self._get_data(flag='TEST') | |
| test_data, test_loader = self._get_data(flag='TEST') | |
| path = os.path.join(self.args.checkpoints, setting) | |
| if not os.path.exists(path): | |
| os.makedirs(path) | |
| time_now = time.time() | |
| train_steps = len(train_loader) | |
| early_stopping = EarlyStopping(patience=self.args.patience, verbose=True) | |
| model_optim = self._select_optimizer() | |
| criterion = self._select_criterion() | |
| for epoch in range(self.args.train_epochs): | |
| iter_count = 0 | |
| train_loss = [] | |
| self.model.train() | |
| epoch_time = time.time() | |
| for i, (batch_x, label, padding_mask) in enumerate(train_loader): | |
| iter_count += 1 | |
| model_optim.zero_grad() | |
| batch_x = batch_x.float().to(self.device) | |
| padding_mask = padding_mask.float().to(self.device) | |
| label = label.to(self.device) | |
| outputs = self.model(batch_x, padding_mask, None, None) | |
| loss = criterion(outputs, label.long().squeeze(-1)) | |
| train_loss.append(loss.item()) | |
| if (i + 1) % 100 == 0: | |
| print("\titers: {0}, epoch: {1} | loss: {2:.7f}".format(i + 1, epoch + 1, loss.item())) | |
| speed = (time.time() - time_now) / iter_count | |
| left_time = speed * ((self.args.train_epochs - epoch) * train_steps - i) | |
| print('\tspeed: {:.4f}s/iter; left time: {:.4f}s'.format(speed, left_time)) | |
| iter_count = 0 | |
| time_now = time.time() | |
| loss.backward() | |
| nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=4.0) | |
| model_optim.step() | |
| print("Epoch: {} cost time: {}".format(epoch + 1, time.time() - epoch_time)) | |
| train_loss = np.average(train_loss) | |
| vali_loss, val_accuracy = self.vali(vali_data, vali_loader, criterion) | |
| test_loss, test_accuracy = self.vali(test_data, test_loader, criterion) | |
| print( | |
| "Epoch: {0}, Steps: {1} | Train Loss: {2:.3f} Vali Loss: {3:.3f} Vali Acc: {4:.3f} Test Loss: {5:.3f} Test Acc: {6:.3f}" | |
| .format(epoch + 1, train_steps, train_loss, vali_loss, val_accuracy, test_loss, test_accuracy)) | |
| early_stopping(-val_accuracy, self.model, path) | |
| if early_stopping.early_stop: | |
| print("Early stopping") | |
| break | |
| if (epoch + 1) % 5 == 0: | |
| adjust_learning_rate(model_optim, epoch + 1, self.args) | |
| best_model_path = path + '/' + 'checkpoint.pth' | |
| self.model.load_state_dict(torch.load(best_model_path)) | |
| return self.model | |
| def test(self, setting, test=0): | |
| test_data, test_loader = self._get_data(flag='TEST') | |
| if test: | |
| print('loading model') | |
| self.model.load_state_dict(torch.load(os.path.join('./checkpoints/' + setting, 'checkpoint.pth'))) | |
| preds = [] | |
| trues = [] | |
| folder_path = './test_results/' + setting + '/' | |
| if not os.path.exists(folder_path): | |
| os.makedirs(folder_path) | |
| self.model.eval() | |
| with torch.no_grad(): | |
| for i, (batch_x, label, padding_mask) in enumerate(test_loader): | |
| batch_x = batch_x.float().to(self.device) | |
| padding_mask = padding_mask.float().to(self.device) | |
| label = label.to(self.device) | |
| outputs = self.model(batch_x, padding_mask, None, None) | |
| preds.append(outputs.detach()) | |
| trues.append(label) | |
| preds = torch.cat(preds, 0) | |
| trues = torch.cat(trues, 0) | |
| print('test shape:', preds.shape, trues.shape) | |
| probs = torch.nn.functional.softmax(preds) # (total_samples, num_classes) est. prob. for each class and sample | |
| predictions = torch.argmax(probs, dim=1).cpu().numpy() # (total_samples,) int class index for each sample | |
| trues = trues.flatten().cpu().numpy() | |
| accuracy = cal_accuracy(predictions, trues) | |
| # result save | |
| folder_path = './results/' + setting + '/' | |
| if not os.path.exists(folder_path): | |
| os.makedirs(folder_path) | |
| print('accuracy:{}'.format(accuracy)) | |
| file_name='result_classification.txt' | |
| f = open(os.path.join(folder_path,file_name), 'a') | |
| f.write(setting + " \n") | |
| f.write('accuracy:{}'.format(accuracy)) | |
| f.write('\n') | |
| f.write('\n') | |
| f.close() | |
| return | |