my-tide-env / api_utils.py
alwaysgood's picture
Update api_utils.py
9241a3b verified
raw
history blame
21.7 kB
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Union
import pytz
from supabase_utils import get_supabase_client
from config import STATION_NAMES
# API 응답 표준 포맷
def create_api_response(success: bool, data: any = None, error: str = None, meta: Dict = None) -> Dict:
"""표준 API 응답 포맷 생성"""
response = {
"success": success,
"timestamp": datetime.now(pytz.timezone('Asia/Seoul')).isoformat(),
}
if meta:
response["meta"] = meta
if success:
response["data"] = data
else:
response["error"] = error or "Unknown error"
return response
def get_station_meta(station_id: str) -> Dict:
"""관측소 메타 정보 반환"""
# 관측소 좌표 정보 (실제 좌표)
STATION_COORDS = {
"DT_0001": {"lat": 37.452, "lon": 126.592},
"DT_0002": {"lat": 36.9669, "lon": 126.823},
"DT_0003": {"lat": 35.4262, "lon": 126.421},
"DT_0008": {"lat": 37.1922, "lon": 126.647},
"DT_0017": {"lat": 37.0075, "lon": 126.353},
"DT_0018": {"lat": 35.9755, "lon": 126.563},
"DT_0024": {"lat": 36.0069, "lon": 126.688},
"DT_0025": {"lat": 36.4064, "lon": 126.486},
"DT_0037": {"lat": 36.1173, "lon": 125.985},
"DT_0043": {"lat": 37.2394, "lon": 126.429},
"DT_0050": {"lat": 36.9131, "lon": 126.239},
"DT_0051": {"lat": 36.1289, "lon": 126.495},
"DT_0052": {"lat": 37.3382, "lon": 126.586},
"DT_0065": {"lat": 37.2394, "lon": 126.155},
"DT_0066": {"lat": 35.6858, "lon": 126.334},
"DT_0067": {"lat": 36.6737, "lon": 126.132},
"DT_0068": {"lat": 35.6181, "lon": 126.302},
}
coords = STATION_COORDS.get(station_id, {"lat": 0, "lon": 0})
return {
"obs_post_id": station_id,
"obs_post_name": STATION_NAMES.get(station_id, "Unknown"),
"obs_lat": str(coords["lat"]),
"obs_lon": str(coords["lon"]),
"data_type": "prediction" # 예측 데이터임을 명시
}
# 1. 현재/미래 조위 조회 (조화 예측 폴백 포함)
def api_get_tide_level(
station_id: str,
target_time: Optional[str] = None,
use_harmonic_fallback: bool = True
) -> Dict:
"""
특정 시간의 조위 정보 조회
Args:
station_id: 관측소 ID
target_time: 조회 시간 (ISO format, None이면 현재 시간)
use_harmonic_fallback: 최종 예측이 없을 때 조화 예측 사용 여부
Returns:
API 응답 (최종 예측 우선, 없으면 조화 예측)
"""
supabase = get_supabase_client()
if not supabase:
return create_api_response(False, error="Database connection failed")
try:
# 대상 시간 파싱
if target_time:
query_time = datetime.fromisoformat(target_time.replace('Z', '+00:00'))
else:
query_time = datetime.now(pytz.timezone('Asia/Seoul'))
query_str = query_time.strftime('%Y-%m-%dT%H:%M:%S')
# 1차: 최종 예측 (tide_predictions) 조회
result = supabase.table('tide_predictions')\
.select('*')\
.eq('station_id', station_id)\
.gte('predicted_at', query_str)\
.order('predicted_at')\
.limit(1)\
.execute()
if result.data:
# 최종 예측 데이터가 있는 경우
data = result.data[0]
return create_api_response(
success=True,
data={
"record_time": data['predicted_at'],
"final_value": round(data.get('final_tide_level', 0), 1),
"residual_value": round(data.get('predicted_residual', 0), 1),
"harmonic_value": round(data.get('harmonic_level', 0), 1),
"data_source": "final_prediction",
"confidence": "high"
},
meta=get_station_meta(station_id)
)
# 2차: 조화 예측 (harmonic_predictions) 폴백
if use_harmonic_fallback:
result = supabase.table('harmonic_predictions')\
.select('*')\
.eq('station_id', station_id)\
.gte('predicted_at', query_str)\
.order('predicted_at')\
.limit(1)\
.execute()
if result.data:
data = result.data[0]
return create_api_response(
success=True,
data={
"record_time": data['predicted_at'],
"final_value": round(data.get('harmonic_level', 0), 1),
"residual_value": None, # 잔차 예측 없음
"harmonic_value": round(data.get('harmonic_level', 0), 1),
"data_source": "harmonic_only",
"confidence": "medium",
"note": "잔차 예측이 없어 조화 예측만 제공됩니다"
},
meta=get_station_meta(station_id)
)
return create_api_response(
success=False,
error=f"No data available for {query_str}",
meta=get_station_meta(station_id)
)
except Exception as e:
return create_api_response(False, error=str(e))
# 2. 시간대별 조위 조회 (공공 API 형식)
def api_get_tide_series(
station_id: str,
start_time: Optional[str] = None,
end_time: Optional[str] = None,
interval_minutes: int = 60
) -> Dict:
"""
시간대별 조위 정보 조회 (공공 API 형식과 유사)
Args:
station_id: 관측소 ID
start_time: 시작 시간 (None이면 현재)
end_time: 종료 시간 (None이면 24시간 후)
interval_minutes: 데이터 간격 (기본 60분)
Returns:
시계열 데이터
"""
supabase = get_supabase_client()
if not supabase:
return create_api_response(False, error="Database connection failed")
try:
# 시간 범위 설정
kst = pytz.timezone('Asia/Seoul')
if start_time:
start_dt = datetime.fromisoformat(start_time.replace('Z', '+00:00'))
else:
start_dt = datetime.now(kst)
if end_time:
end_dt = datetime.fromisoformat(end_time.replace('Z', '+00:00'))
else:
end_dt = start_dt + timedelta(hours=24)
# 최종 예측 조회
result = supabase.table('tide_predictions')\
.select('predicted_at, final_tide_level, predicted_residual, harmonic_level')\
.eq('station_id', station_id)\
.gte('predicted_at', start_dt.strftime('%Y-%m-%dT%H:%M:%S'))\
.lte('predicted_at', end_dt.strftime('%Y-%m-%dT%H:%M:%S'))\
.order('predicted_at')\
.execute()
data_points = []
data_source = "final_prediction"
if result.data:
# 간격에 맞춰 데이터 필터링
for i, item in enumerate(result.data):
if i % (interval_minutes // 5) == 0: # 5분 간격 데이터 기준
data_points.append({
"record_time": item['predicted_at'],
"real_value": str(round(item['final_tide_level'], 0)), # 정수로 표시
"pre_value": str(round(item['harmonic_level'], 0)),
"residual": str(round(item['predicted_residual'], 0))
})
else:
# 조화 예측 폴백
result = supabase.table('harmonic_predictions')\
.select('predicted_at, harmonic_level')\
.eq('station_id', station_id)\
.gte('predicted_at', start_dt.strftime('%Y-%m-%dT%H:%M:%S'))\
.lte('predicted_at', end_dt.strftime('%Y-%m-%dT%H:%M:%S'))\
.order('predicted_at')\
.execute()
if result.data:
data_source = "harmonic_only"
for i, item in enumerate(result.data):
if i % (interval_minutes // 5) == 0:
data_points.append({
"record_time": item['predicted_at'],
"real_value": str(round(item['harmonic_level'], 0)),
"pre_value": str(round(item['harmonic_level'], 0)),
"residual": "0"
})
meta = get_station_meta(station_id)
meta["data_source"] = data_source
meta["data_count"] = len(data_points)
meta["interval_minutes"] = interval_minutes
return {
"result": {
"meta": meta,
"data": data_points
}
}
except Exception as e:
return create_api_response(False, error=str(e))
# 3. 만조/간조 정보
def api_get_extremes_info(
station_id: str,
date: Optional[str] = None,
include_secondary: bool = False
) -> Dict:
"""
특정 날짜의 만조/간조 정보
Args:
station_id: 관측소 ID
date: 날짜 (YYYY-MM-DD, None이면 오늘)
include_secondary: 부차 만조/간조 포함 여부
Returns:
만조/간조 시간과 수위
"""
supabase = get_supabase_client()
if not supabase:
return create_api_response(False, error="Database connection failed")
try:
# 날짜 범위 설정
if date:
target_date = datetime.strptime(date, '%Y-%m-%d')
else:
target_date = datetime.now(pytz.timezone('Asia/Seoul'))
start_dt = target_date.replace(hour=0, minute=0, second=0)
end_dt = target_date.replace(hour=23, minute=59, second=59)
# 데이터 조회 (최종 예측 우선)
result = supabase.table('tide_predictions')\
.select('predicted_at, final_tide_level')\
.eq('station_id', station_id)\
.gte('predicted_at', start_dt.strftime('%Y-%m-%dT%H:%M:%S'))\
.lte('predicted_at', end_dt.strftime('%Y-%m-%dT%H:%M:%S'))\
.order('predicted_at')\
.execute()
data_source = "final_prediction"
# 데이터가 없으면 조화 예측 사용
if not result.data:
result = supabase.table('harmonic_predictions')\
.select('predicted_at, harmonic_level')\
.eq('station_id', station_id)\
.gte('predicted_at', start_dt.strftime('%Y-%m-%dT%H:%M:%S'))\
.lte('predicted_at', end_dt.strftime('%Y-%m-%dT%H:%M:%S'))\
.order('predicted_at')\
.execute()
if result.data:
# 컬럼명 통일
for item in result.data:
item['final_tide_level'] = item.pop('harmonic_level')
data_source = "harmonic_only"
if not result.data or len(result.data) < 3:
return create_api_response(False, error="Insufficient data for extremes")
# 극값 찾기
extremes = []
data = result.data
for i in range(1, len(data) - 1):
prev_level = data[i-1]['final_tide_level']
curr_level = data[i]['final_tide_level']
next_level = data[i+1]['final_tide_level']
# 만조 (극대값)
if curr_level > prev_level and curr_level > next_level:
extremes.append({
'type': 'high_tide',
'time': data[i]['predicted_at'],
'level': round(curr_level, 1),
'time_kr': datetime.fromisoformat(data[i]['predicted_at'].replace('Z', '+00:00'))
.strftime('%H시 %M분')
})
# 간조 (극소값)
elif curr_level < prev_level and curr_level < next_level:
extremes.append({
'type': 'low_tide',
'time': data[i]['predicted_at'],
'level': round(curr_level, 1),
'time_kr': datetime.fromisoformat(data[i]['predicted_at'].replace('Z', '+00:00'))
.strftime('%H시 %M분')
})
# 주요 만조/간조만 필터링 (부차 제외)
if not include_secondary and len(extremes) > 4:
# 수위 차이가 큰 것들만 선택
high_tides = sorted([e for e in extremes if e['type'] == 'high_tide'],
key=lambda x: x['level'], reverse=True)[:2]
low_tides = sorted([e for e in extremes if e['type'] == 'low_tide'],
key=lambda x: x['level'])[:2]
extremes = sorted(high_tides + low_tides, key=lambda x: x['time'])
meta = get_station_meta(station_id)
meta["date"] = target_date.strftime('%Y-%m-%d')
meta["data_source"] = data_source
return create_api_response(
success=True,
data={
"extremes": extremes,
"summary": {
"high_tide_count": len([e for e in extremes if e['type'] == 'high_tide']),
"low_tide_count": len([e for e in extremes if e['type'] == 'low_tide']),
"max_level": max([e['level'] for e in extremes]) if extremes else None,
"min_level": min([e['level'] for e in extremes]) if extremes else None
}
},
meta=meta
)
except Exception as e:
return create_api_response(False, error=str(e))
# 4. 위험 수위 알림
def api_check_tide_alert(
station_id: str,
hours_ahead: int = 24,
warning_level: float = 700.0,
danger_level: float = 750.0
) -> Dict:
"""
위험 수위 체크 및 알림
Args:
station_id: 관측소 ID
hours_ahead: 확인할 시간 (기본 24시간)
warning_level: 주의 수위 (cm)
danger_level: 경고 수위 (cm)
Returns:
위험 수위 정보
"""
supabase = get_supabase_client()
if not supabase:
return create_api_response(False, error="Database connection failed")
try:
now = datetime.now(pytz.timezone('Asia/Seoul'))
end_time = now + timedelta(hours=hours_ahead)
# 위험 수위 데이터 조회
result = supabase.table('tide_predictions')\
.select('predicted_at, final_tide_level')\
.eq('station_id', station_id)\
.gte('predicted_at', now.strftime('%Y-%m-%dT%H:%M:%S'))\
.lte('predicted_at', end_time.strftime('%Y-%m-%dT%H:%M:%S'))\
.gte('final_tide_level', warning_level)\
.order('predicted_at')\
.execute()
alerts = []
alert_level = "safe"
if result.data:
for item in result.data:
level = item['final_tide_level']
if level >= danger_level:
severity = "danger"
alert_level = "danger"
elif level >= warning_level:
severity = "warning"
if alert_level != "danger":
alert_level = "warning"
else:
continue
alerts.append({
"time": item['predicted_at'],
"level": round(level, 1),
"severity": severity,
"time_kr": datetime.fromisoformat(item['predicted_at'].replace('Z', '+00:00'))
.strftime('%m월 %d일 %H시 %M분')
})
# 첫 위험 시간 계산
first_alert_time = None
if alerts:
first_alert_time = alerts[0]['time']
time_until = (datetime.fromisoformat(first_alert_time.replace('Z', '+00:00')) - now).total_seconds() / 3600
else:
time_until = None
meta = get_station_meta(station_id)
meta["check_time"] = now.isoformat()
meta["hours_ahead"] = hours_ahead
return create_api_response(
success=True,
data={
"alert_level": alert_level,
"alert_count": len(alerts),
"first_alert_time": first_alert_time,
"hours_until_first": round(time_until, 1) if time_until else None,
"alerts": alerts[:10], # 최대 10개만
"thresholds": {
"warning": warning_level,
"danger": danger_level
}
},
meta=meta
)
except Exception as e:
return create_api_response(False, error=str(e))
# 5. 다중 관측소 비교
def api_compare_stations(
station_ids: List[str],
target_time: Optional[str] = None
) -> Dict:
"""
여러 관측소 동시 비교
Args:
station_ids: 관측소 ID 리스트
target_time: 비교 시간 (None이면 현재)
Returns:
관측소별 조위 비교 정보
"""
if not station_ids:
return create_api_response(False, error="No station IDs provided")
try:
comparison_data = []
for station_id in station_ids[:10]: # 최대 10개 관측소
result = api_get_tide_level(station_id, target_time)
if result.get("success") and result.get("data"):
data = result["data"]
comparison_data.append({
"station_id": station_id,
"station_name": STATION_NAMES.get(station_id, "Unknown"),
"tide_level": data.get("final_value"),
"data_source": data.get("data_source"),
"time": data.get("record_time")
})
else:
comparison_data.append({
"station_id": station_id,
"station_name": STATION_NAMES.get(station_id, "Unknown"),
"tide_level": None,
"data_source": "no_data",
"time": None
})
# 수위 기준 정렬
comparison_data.sort(key=lambda x: x['tide_level'] if x['tide_level'] else 0, reverse=True)
# 통계 계산
valid_levels = [d['tide_level'] for d in comparison_data if d['tide_level']]
stats = {
"max_level": max(valid_levels) if valid_levels else None,
"min_level": min(valid_levels) if valid_levels else None,
"avg_level": round(sum(valid_levels) / len(valid_levels), 1) if valid_levels else None,
"station_count": len(comparison_data),
"valid_count": len(valid_levels)
}
return create_api_response(
success=True,
data={
"comparison": comparison_data,
"statistics": stats
},
meta={
"query_time": target_time or datetime.now(pytz.timezone('Asia/Seoul')).isoformat(),
"station_count": len(station_ids)
}
)
except Exception as e:
return create_api_response(False, error=str(e))
# 6. 건강 체크 / 상태 확인
def api_health_check() -> Dict:
"""
API 및 데이터베이스 상태 확인
Returns:
시스템 상태 정보
"""
try:
supabase = get_supabase_client()
db_status = "connected" if supabase else "disconnected"
# 데이터 가용성 체크
data_availability = {}
if supabase:
# 최종 예측 데이터 확인
result = supabase.table('tide_predictions')\
.select('station_id', count='exact')\
.limit(1)\
.execute()
tide_count = result.count if hasattr(result, 'count') else 0
# 조화 예측 데이터 확인
result = supabase.table('harmonic_predictions')\
.select('station_id', count='exact')\
.limit(1)\
.execute()
harmonic_count = result.count if hasattr(result, 'count') else 0
data_availability = {
"tide_predictions": tide_count,
"harmonic_predictions": harmonic_count
}
return create_api_response(
success=True,
data={
"status": "healthy" if db_status == "connected" else "degraded",
"database": db_status,
"data_availability": data_availability,
"api_version": "1.0.0",
"endpoints": [
"/api/tide_level",
"/api/tide_series",
"/api/extremes",
"/api/alert",
"/api/compare",
"/api/health"
]
}
)
except Exception as e:
return create_api_response(
success=False,
error=str(e),
data={"status": "error"}
)