File size: 24,601 Bytes
47b6af0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
"""
Real-time Performance Evaluation API
실시간 예측 성능 평가 및 모니터링 API
"""

from fastapi import FastAPI, HTTPException, Header, Query
from datetime import datetime, timedelta
import numpy as np
import pandas as pd
from typing import Optional, List, Dict, Any
import logging
from config import INTERNAL_API_KEY

logger = logging.getLogger(__name__)

# 성능 데이터 저장소 (실제로는 데이터베이스 사용)
performance_cache = {
    "realtime_metrics": {},
    "historical_data": [],
    "station_performance": {},
    "alert_thresholds": {
        "rmse_warning": 30.0,
        "rmse_critical": 50.0,
        "accuracy_warning": 80.0,
        "accuracy_critical": 70.0
    }
}

def verify_internal_api_key(authorization: str = Header(None)):
    """내부 API 키 검증"""
    if authorization and authorization.startswith("Bearer "):
        return authorization == f"Bearer {INTERNAL_API_KEY}"
    return False

def register_performance_routes(app: FastAPI):
    """성능 평가 API 라우트 등록"""
    
    @app.get("/api/performance/realtime", tags=["Performance"])
    async def get_realtime_performance(
        station_id: Optional[str] = Query(None, description="특정 관측소 성능 (전체: None)"),
        authorization: str = Header(None)
    ):
        """실시간 예측 성능 지표 조회"""
        
        # 내부 API는 인증 필요, 외부는 읽기 전용
        is_internal = verify_internal_api_key(authorization)
        
        try:
            current_time = datetime.now()
            
            if station_id:
                # 특정 관측소 성능
                station_metrics = await get_station_performance(station_id)
                return {
                    "timestamp": current_time.isoformat(),
                    "station_id": station_id,
                    **station_metrics,
                    "data_source": "realtime"
                }
            else:
                # 전체 시스템 성능
                overall_metrics = await get_overall_performance()
                
                response_data = {
                    "timestamp": current_time.isoformat(),
                    "rmse": overall_metrics["rmse"],
                    "mae": overall_metrics["mae"],
                    "accuracy": overall_metrics["accuracy"],
                    "prediction_count": overall_metrics["prediction_count"],
                    "active_stations": overall_metrics["active_stations"],
                    "data_quality_score": overall_metrics["data_quality_score"],
                    "status": overall_metrics["status"]
                }
                
                # 내부 요청시 추가 정보 제공
                if is_internal:
                    response_data.update({
                        "detailed_metrics": overall_metrics.get("detailed_metrics", {}),
                        "station_breakdown": overall_metrics.get("station_breakdown", {}),
                        "recent_alerts": overall_metrics.get("recent_alerts", [])
                    })
                
                return response_data
                
        except Exception as e:
            logger.error(f"Realtime performance query failed: {str(e)}")
            raise HTTPException(status_code=500, detail=str(e))
    
    @app.get("/api/performance/historical", tags=["Performance"])
    async def get_historical_performance(
        hours: int = Query(24, description="조회할 시간 범위 (시간)"),
        station_id: Optional[str] = Query(None, description="특정 관측소"),
        metric: str = Query("rmse", description="성능 지표 (rmse/mae/accuracy)"),
        authorization: str = Header(None)
    ):
        """성능 히스토리 조회"""
        
        is_internal = verify_internal_api_key(authorization)
        
        try:
            # 시간 범위 검증
            if hours > 168:  # 최대 1주일
                hours = 168
            
            end_time = datetime.now()
            start_time = end_time - timedelta(hours=hours)
            
            historical_data = await get_performance_history(
                start_time, end_time, station_id, metric
            )
            
            # 통계 계산
            if historical_data:
                values = [item[metric] for item in historical_data if item.get(metric) is not None]
                
                if values:
                    statistics = {
                        "mean": round(np.mean(values), 2),
                        "std": round(np.std(values), 2),
                        "min": round(min(values), 2),
                        "max": round(max(values), 2),
                        "trend": calculate_trend(values)
                    }
                else:
                    statistics = None
            else:
                statistics = None
            
            return {
                "timestamp": end_time.isoformat(),
                "query_range": {
                    "start_time": start_time.isoformat(),
                    "end_time": end_time.isoformat(),
                    "hours": hours
                },
                "station_id": station_id,
                "metric": metric,
                "data_points": len(historical_data),
                "data": historical_data[-100:] if not is_internal else historical_data,  # 외부는 최근 100개만
                "statistics": statistics
            }
            
        except Exception as e:
            logger.error(f"Historical performance query failed: {str(e)}")
            raise HTTPException(status_code=500, detail=str(e))
    
    @app.get("/api/performance/comparison", tags=["Performance"])
    async def compare_station_performance(
        station_ids: str = Query(..., description="비교할 관측소들 (쉼표 구분)"),
        metric: str = Query("rmse", description="비교할 성능 지표"),
        period: str = Query("24h", description="비교 기간 (1h/6h/24h/7d)"),
        authorization: str = Header(None)
    ):
        """관측소별 성능 비교"""
        
        is_internal = verify_internal_api_key(authorization)
        
        try:
            # 관측소 목록 파싱
            stations = [s.strip() for s in station_ids.split(",")]
            
            if len(stations) > 10:  # 최대 10개 관측소
                stations = stations[:10]
            
            # 기간 파싱
            period_hours = {
                "1h": 1, "6h": 6, "24h": 24, "7d": 168
            }.get(period, 24)
            
            comparison_data = {}
            
            for station_id in stations:
                station_metrics = await get_station_performance_summary(
                    station_id, period_hours, metric
                )
                comparison_data[station_id] = station_metrics
            
            # 순위 계산
            if metric in ["rmse", "mae"]:
                # 낮을수록 좋음
                sorted_stations = sorted(
                    comparison_data.items(),
                    key=lambda x: x[1].get("current_value", float('inf'))
                )
            else:  # accuracy 등
                # 높을수록 좋음
                sorted_stations = sorted(
                    comparison_data.items(),
                    key=lambda x: x[1].get("current_value", 0),
                    reverse=True
                )
            
            return {
                "timestamp": datetime.now().isoformat(),
                "metric": metric,
                "period": period,
                "stations_count": len(stations),
                "comparison": comparison_data,
                "ranking": [{"rank": i+1, "station_id": station, "value": data["current_value"]} 
                           for i, (station, data) in enumerate(sorted_stations)],
                "best_performer": sorted_stations[0][0] if sorted_stations else None,
                "summary": {
                    "best_value": sorted_stations[0][1]["current_value"] if sorted_stations else None,
                    "worst_value": sorted_stations[-1][1]["current_value"] if sorted_stations else None,
                    "average_value": round(np.mean([data["current_value"] for data in comparison_data.values()]), 2)
                }
            }
            
        except Exception as e:
            logger.error(f"Station comparison failed: {str(e)}")
            raise HTTPException(status_code=500, detail=str(e))
    
    @app.get("/api/performance/alerts", tags=["Performance"])
    async def get_performance_alerts(
        active_only: bool = Query(True, description="활성 알림만 조회"),
        hours: int = Query(24, description="조회할 시간 범위"),
        authorization: str = Header(None)
    ):
        """성능 알림 조회"""
        
        verify_internal_api_key(authorization)  # 내부 API만 접근 가능
        
        try:
            alerts = await get_current_alerts(active_only, hours)
            
            # 알림 분류
            critical_alerts = [a for a in alerts if a["severity"] == "critical"]
            warning_alerts = [a for a in alerts if a["severity"] == "warning"]
            
            return {
                "timestamp": datetime.now().isoformat(),
                "query_range_hours": hours,
                "active_only": active_only,
                "total_alerts": len(alerts),
                "critical_count": len(critical_alerts),
                "warning_count": len(warning_alerts),
                "alerts": alerts,
                "summary": {
                    "system_status": "critical" if critical_alerts else ("warning" if warning_alerts else "normal"),
                    "requires_attention": len(critical_alerts) > 0,
                    "most_recent": alerts[0] if alerts else None
                }
            }
            
        except Exception as e:
            logger.error(f"Performance alerts query failed: {str(e)}")
            raise HTTPException(status_code=500, detail=str(e))
    
    @app.post("/api/performance/update", tags=["Performance"])
    async def update_performance_metrics(
        request_data: Dict[str, Any],
        authorization: str = Header(None)
    ):
        """성능 지표 업데이트 (내부 사용)"""
        
        verify_internal_api_key(authorization)  # 내부 API만 접근 가능
        
        try:
            station_id = request_data.get("station_id")
            predictions = request_data.get("predictions", [])
            actual_values = request_data.get("actual_values", [])
            timestamp = request_data.get("timestamp", datetime.now().isoformat())
            
            if not predictions or not actual_values:
                raise HTTPException(status_code=400, detail="Predictions and actual values required")
            
            if len(predictions) != len(actual_values):
                raise HTTPException(status_code=400, detail="Predictions and actual values must have same length")
            
            # 성능 지표 계산
            metrics = calculate_performance_metrics(predictions, actual_values)
            
            # 성능 데이터 저장
            performance_record = {
                "station_id": station_id,
                "timestamp": timestamp,
                "predictions": predictions,
                "actual_values": actual_values,
                "metrics": metrics,
                "data_points": len(predictions)
            }
            
            await save_performance_record(performance_record)
            
            # 실시간 캐시 업데이트
            performance_cache["realtime_metrics"][station_id] = metrics
            performance_cache["historical_data"].append(performance_record)
            
            # 오래된 데이터 정리 (메모리 관리)
            if len(performance_cache["historical_data"]) > 1000:
                performance_cache["historical_data"] = performance_cache["historical_data"][-500:]
            
            # 알림 체크
            alerts = check_performance_alerts(station_id, metrics)
            
            return {
                "success": True,
                "timestamp": datetime.now().isoformat(),
                "station_id": station_id,
                "metrics": metrics,
                "data_points": len(predictions),
                "alerts_triggered": len(alerts),
                "alerts": alerts
            }
            
        except Exception as e:
            logger.error(f"Performance update failed: {str(e)}")
            raise HTTPException(status_code=500, detail=str(e))

# ============================================================================
# 성능 계산 및 분석 함수들
# ============================================================================

async def get_overall_performance():
    """전체 시스템 성능 조회"""
    
    # 시연 모드에서는 시뮬레이션 데이터 사용
    from internal_api import demo_session, active_issues
    
    base_rmse = 18.5
    base_mae = 14.2
    base_accuracy = 89.2
    
    # 활성 문제들의 영향 계산
    rmse_multiplier = 1.0
    accuracy_penalty = 0
    
    for issue in active_issues.values():
        if issue["type"] == "extreme_weather":
            rmse_multiplier *= 1.8
            accuracy_penalty += 15
        elif issue["type"] == "sensor_malfunction":
            rmse_multiplier *= 1.3
            accuracy_penalty += 8
        elif issue["type"] == "data_corruption":
            rmse_multiplier *= 1.5
            accuracy_penalty += 12
        elif issue["type"] == "network_failure":
            rmse_multiplier *= 1.2
            accuracy_penalty += 5
    
    # 랜덤 변동 추가
    rmse_variation = np.random.normal(0, 2)
    accuracy_variation = np.random.normal(0, 3)
    
    current_rmse = max(10, base_rmse * rmse_multiplier + rmse_variation)
    current_mae = max(8, base_mae * rmse_multiplier * 0.8 + rmse_variation * 0.7)
    current_accuracy = max(50, min(98, base_accuracy - accuracy_penalty + accuracy_variation))
    
    # 데이터 품질 점수
    data_quality = 95 - len(active_issues) * 10
    
    # 상태 결정
    if current_rmse > 40 or current_accuracy < 75:
        status = "critical"
    elif current_rmse > 25 or current_accuracy < 85:
        status = "warning"
    else:
        status = "good"
    
    return {
        "rmse": round(current_rmse, 1),
        "mae": round(current_mae, 1),
        "accuracy": round(current_accuracy, 1),
        "prediction_count": demo_session.get("total_processed", 0),
        "active_stations": len(demo_session.get("active_stations", [])),
        "data_quality_score": round(data_quality, 1),
        "status": status,
        "detailed_metrics": {
            "rmse_trend": "increasing" if len(active_issues) > 0 else "stable",
            "prediction_latency_ms": np.random.randint(50, 200),
            "data_freshness_minutes": np.random.randint(1, 10)
        },
        "station_breakdown": await get_all_stations_summary(),
        "recent_alerts": await get_recent_alerts_summary()
    }

async def get_station_performance(station_id: str):
    """특정 관측소 성능 조회"""
    
    # 기본 성능 + 관측소별 변동
    station_seed = hash(station_id) % 1000
    np.random.seed(station_seed)
    
    base_rmse = 18.5 + np.random.normal(0, 3)
    base_mae = 14.2 + np.random.normal(0, 2)
    base_accuracy = 89.2 + np.random.normal(0, 5)
    
    # 활성 문제 영향
    from internal_api import active_issues
    
    for issue in active_issues.values():
        if issue.get("station_id") == station_id or not issue.get("station_id"):
            if issue["type"] == "sensor_malfunction" and issue.get("station_id") == station_id:
                base_rmse *= 2.0
                base_accuracy -= 25
            elif issue["type"] == "extreme_weather":
                base_rmse *= 1.6
                base_accuracy -= 12
    
    return {
        "rmse": round(max(10, base_rmse), 1),
        "mae": round(max(8, base_mae), 1),
        "accuracy": round(max(50, min(98, base_accuracy)), 1),
        "data_points": np.random.randint(50, 200),
        "last_prediction": (datetime.now() - timedelta(minutes=np.random.randint(1, 15))).isoformat(),
        "status": "active" if station_id in demo_session.get("active_stations", []) else "inactive"
    }

async def get_performance_history(start_time, end_time, station_id, metric):
    """성능 히스토리 생성 (시뮬레이션)"""
    
    data_points = []
    current_time = start_time
    
    # 1시간 간격으로 데이터 생성
    while current_time <= end_time:
        
        # 시간대별 기본값
        hour = current_time.hour
        base_value = {
            "rmse": 18.5 + 5 * np.sin(2 * np.pi * hour / 24),
            "mae": 14.2 + 3 * np.sin(2 * np.pi * hour / 24),
            "accuracy": 89.2 - 8 * np.sin(2 * np.pi * hour / 24)
        }
        
        # 랜덤 변동
        variation = np.random.normal(0, 2)
        value = base_value[metric] + variation
        
        # 관측소별 조정
        if station_id:
            station_offset = hash(station_id) % 10 - 5
            value += station_offset
        
        data_points.append({
            "timestamp": current_time.isoformat(),
            "station_id": station_id,
            metric: round(value, 1),
            "data_points": np.random.randint(10, 50)
        })
        
        current_time += timedelta(hours=1)
    
    return data_points

async def get_station_performance_summary(station_id, period_hours, metric):
    """관측소 성능 요약"""
    
    # 현재 성능
    current_perf = await get_station_performance(station_id)
    current_value = current_perf[metric]
    
    # 기간별 평균 (시뮬레이션)
    period_variation = np.random.normal(0, 5)
    period_average = current_value + period_variation
    
    # 트렌드 계산
    trend_change = np.random.uniform(-10, 10)
    trend = "improving" if trend_change < -2 else ("degrading" if trend_change > 2 else "stable")
    
    return {
        "station_id": station_id,
        "current_value": current_value,
        "period_average": round(period_average, 1),
        "trend": trend,
        "trend_change": round(trend_change, 1),
        "data_points": np.random.randint(20, 100),
        "last_update": datetime.now().isoformat()
    }

def calculate_performance_metrics(predictions, actual_values):
    """성능 지표 계산"""
    
    predictions = np.array(predictions)
    actual_values = np.array(actual_values)
    
    # RMSE
    rmse = np.sqrt(np.mean((predictions - actual_values) ** 2))
    
    # MAE
    mae = np.mean(np.abs(predictions - actual_values))
    
    # 정확도 (95% 신뢰구간 내 예측 비율)
    errors = np.abs(predictions - actual_values)
    threshold = np.percentile(errors, 95)
    accuracy = np.mean(errors <= threshold) * 100
    
    # 추가 지표
    mape = np.mean(np.abs((actual_values - predictions) / actual_values)) * 100
    r2 = 1 - (np.sum((actual_values - predictions) ** 2) / np.sum((actual_values - np.mean(actual_values)) ** 2))
    
    return {
        "rmse": round(rmse, 2),
        "mae": round(mae, 2),
        "accuracy": round(accuracy, 1),
        "mape": round(mape, 2),
        "r2_score": round(r2, 3),
        "data_points": len(predictions)
    }

def calculate_trend(values):
    """트렌드 계산"""
    if len(values) < 3:
        return "insufficient_data"
    
    # 선형 회귀로 기울기 계산
    x = np.arange(len(values))
    slope = np.polyfit(x, values, 1)[0]
    
    if slope > 0.5:
        return "increasing"
    elif slope < -0.5:
        return "decreasing"
    else:
        return "stable"

def check_performance_alerts(station_id, metrics):
    """성능 알림 체크"""
    
    alerts = []
    thresholds = performance_cache["alert_thresholds"]
    
    # RMSE 체크
    rmse = metrics["rmse"]
    if rmse > thresholds["rmse_critical"]:
        alerts.append({
            "type": "rmse_critical",
            "severity": "critical",
            "message": f"Critical RMSE level: {rmse} cm",
            "station_id": station_id,
            "threshold": thresholds["rmse_critical"],
            "current_value": rmse,
            "timestamp": datetime.now().isoformat()
        })
    elif rmse > thresholds["rmse_warning"]:
        alerts.append({
            "type": "rmse_warning",
            "severity": "warning",
            "message": f"High RMSE level: {rmse} cm",
            "station_id": station_id,
            "threshold": thresholds["rmse_warning"],
            "current_value": rmse,
            "timestamp": datetime.now().isoformat()
        })
    
    # 정확도 체크
    accuracy = metrics["accuracy"]
    if accuracy < thresholds["accuracy_critical"]:
        alerts.append({
            "type": "accuracy_critical",
            "severity": "critical",
            "message": f"Critical accuracy drop: {accuracy}%",
            "station_id": station_id,
            "threshold": thresholds["accuracy_critical"],
            "current_value": accuracy,
            "timestamp": datetime.now().isoformat()
        })
    elif accuracy < thresholds["accuracy_warning"]:
        alerts.append({
            "type": "accuracy_warning",
            "severity": "warning",
            "message": f"Low accuracy: {accuracy}%",
            "station_id": station_id,
            "threshold": thresholds["accuracy_warning"],
            "current_value": accuracy,
            "timestamp": datetime.now().isoformat()
        })
    
    return alerts

async def get_current_alerts(active_only, hours):
    """현재 알림 조회 (시뮬레이션)"""
    
    from internal_api import active_issues, demo_session
    
    alerts = []
    
    # 활성 문제들을 알림으로 변환
    for issue_id, issue in active_issues.items():
        alerts.append({
            "id": issue_id,
            "type": f"{issue['type']}_alert",
            "severity": "critical" if issue["type"] in ["extreme_weather", "sensor_malfunction"] else "warning",
            "message": f"{issue['type'].replace('_', ' ').title()} detected",
            "station_id": issue.get("station_id"),
            "timestamp": issue["start_time"].isoformat(),
            "duration_minutes": (datetime.now() - issue["start_time"]).total_seconds() / 60,
            "active": True
        })
    
    # 추가 성능 알림 시뮬레이션
    if demo_session.get("active"):
        current_perf = await get_overall_performance()
        
        if current_perf["rmse"] > 30:
            alerts.append({
                "id": "perf_rmse_high",
                "type": "performance_degradation",
                "severity": "warning",
                "message": f"High system RMSE: {current_perf['rmse']} cm",
                "timestamp": (datetime.now() - timedelta(minutes=5)).isoformat(),
                "duration_minutes": 5,
                "active": True
            })
    
    # 정렬 (최신순)
    alerts.sort(key=lambda x: x["timestamp"], reverse=True)
    
    return alerts

async def get_all_stations_summary():
    """모든 관측소 성능 요약"""
    
    from internal_api import demo_session
    stations = demo_session.get("active_stations", ["DT_0001", "DT_0002"])
    
    summary = {}
    for station_id in stations:
        perf = await get_station_performance(station_id)
        summary[station_id] = {
            "rmse": perf["rmse"],
            "accuracy": perf["accuracy"],
            "status": perf["status"]
        }
    
    return summary

async def get_recent_alerts_summary():
    """최근 알림 요약"""
    
    alerts = await get_current_alerts(True, 1)  # 최근 1시간
    
    return {
        "total_count": len(alerts),
        "critical_count": sum(1 for a in alerts if a["severity"] == "critical"),
        "most_recent": alerts[0] if alerts else None
    }

async def save_performance_record(performance_record):
    """성능 기록 저장 (실제로는 데이터베이스 사용)"""
    
    # 여기서는 메모리에만 저장 (시뮬레이션)
    performance_cache["historical_data"].append(performance_record)
    
    # 실제 구현에서는 Supabase나 다른 DB에 저장
    # await supabase.table("performance_metrics").insert(performance_record)
    
    pass

logger.info("Performance API module loaded successfully")