File size: 11,384 Bytes
e1ccef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
class TriangularCausalMask():
    def __init__(self, B, L, device="cpu"):
        mask_shape = [B, 1, L, L]
        with torch.no_grad():
            self._mask = torch.triu(torch.ones(mask_shape, dtype=torch.bool), diagonal=1).to(device)

    @property
    def mask(self):
        return self._mask


class ProbMask():
    def __init__(self, B, H, L, index, scores, device="cpu"):
        _mask = torch.ones(L, scores.shape[-1], dtype=torch.bool).to(device).triu(1)
        _mask_ex = _mask[None, None, :].expand(B, H, L, scores.shape[-1])
        indicator = _mask_ex[torch.arange(B)[:, None, None],
                    torch.arange(H)[None, :, None],
                    index, :].to(device)
        self._mask = indicator.view(scores.shape).to(device)

    @property
    def mask(self):
        return self._mask

def generate_continuous_mask(B, T, C=None, n=5, l=0.1):
    if C:
        res = torch.full((B, T, C), True, dtype=torch.bool)
    else:
        res = torch.full((B, T), True, dtype=torch.bool)

    if isinstance(n, float):
        n = int(n * T)
    n = max(min(n, T), 1)

    if isinstance(l, float):
        l = int(l * T)
    l = max(l, 1)

    for i in range(B):
        for _ in range(n):
            t = np.random.randint(T - l + 1)
            if C:
                # For a continuous timestamps, mask a random selection of channels
                num_channels_to_mask = np.random.randint(1, C + 1) # Randomly decide how many channels to mask
                index = np.random.choice(C, num_channels_to_mask, replace=False) # Select random channels to mask
                res[i, t:t + l, index] = False
            else:
                # For a continuous timestamps, mask all channels
                res[i, t:t + l] = False
    return res


def expand_tensor(input_tensor, third_dim_size):
    # 将输入张量转换为三维张量
    expanded_tensor = input_tensor.unsqueeze(2).expand(-1, -1, third_dim_size)

    return expanded_tensor.bool()


def geom_noise_mask_single(L, lm, masking_ratio):
    """
    Randomly create a boolean mask of length `L`, consisting of subsequences of average length lm, masking with 0s a `masking_ratio`
    proportion of the sequence L. The length of masking subsequences and intervals follow a geometric distribution.
    Args:
        L: length of mask and sequence to be masked
        lm: average length of masking subsequences (streaks of 0s)
        masking_ratio: proportion of L to be masked

    Returns:
        (L,) boolean numpy array intended to mask ('drop') with 0s a sequence of length L
    """
    keep_mask = np.ones(L, dtype=bool)
    p_m = 1 / lm  # probability of each masking sequence stopping. parameter of geometric distribution.
    p_u = p_m * masking_ratio / (
                1 - masking_ratio)  # probability of each unmasked sequence stopping. parameter of geometric distribution.
    p = [p_m, p_u]

    # Start in state 0 with masking_ratio probability
    state = int(np.random.rand() > masking_ratio)  # state 0 means masking, 1 means not masking
    for i in range(L):
        keep_mask[i] = state  # here it happens that state and masking value corresponding to state are identical
        if np.random.rand() < p[state]:
            state = 1 - state

    return keep_mask


def generate_geometric_mask(B, T, C=None, p=0.75, l=3):
    if C:
        mask = np.ones((B, T, C), dtype=bool)
    else:
        mask = np.ones((B, T), dtype=bool)

    for i in range(B):
        if C:
            for c in range(C):
                mask[i, :, c] = geom_noise_mask_single(T, l, p)
        else:
            mask[i, :] = geom_noise_mask_single(T, l, p)

    return torch.from_numpy(mask).to(torch.bool)


def generate_binomial_mask(B, T, C=None, p=0.5):
    if C:
        return torch.from_numpy(np.random.binomial(1, 1 - p, size=(B, T, C))).to(torch.bool)
    else:
        return torch.from_numpy(np.random.binomial(1, 1 - p, size=(B, T))).to(torch.bool)


# def mask_function(x, mask_type, p):
#     if mask_type == 'binomial':
#         mask = generate_binomial_mask(x.size(0), x.size(1), p=p)
#         mask = expand_tensor(mask, x.size(2)).to(x.device)
#     elif mask_type == 'channel_binomial':
#         mask = generate_binomial_mask(x.size(0), x.size(1), x.size(2), p=p).to(x.device)
#     elif mask_type == 'continuous':
#         mask = generate_continuous_mask(x.size(0), x.size(1), n=p).to(x.device)
#         mask = expand_tensor(mask, x.size(2)).to(x.device)
#     elif mask_type == 'channel_continuous':
#         mask = generate_continuous_mask(x.size(0), x.size(1), x.size(2), n=p).to(x.device)
#     elif mask_type == 'all_true':
#         mask = x.new_full((x.size(0), x.size(1)), True, dtype=torch.bool)
#     elif mask_type == 'all_false':
#         mask = x.new_full((x.size(0), x.size(1)), False, dtype=torch.bool)
#     elif mask_type == 'mask_last':
#         mask = x.new_full((x.size(0), x.size(1)), True, dtype=torch.bool)
#         idx = int(x.size(1) * (1 - p))
#         mask[:, idx:] = False
#         mask = expand_tensor(mask, x.size(2)).to(x.device)
#     else:
#         raise ValueError(f'\'{mask_type}\' is a wrong argument for mask function!')
#
#     x = mask * x
#
#     return x, mask

# def mask_function(x, mask_type, mask_ratio, lm):
#     if mask_type == 'binomial':
#         mask = generate_binomial_mask(x.size(0), x.size(1), p=mask_ratio).to(x.device)
#         mask = expand_tensor(mask, x.shape[-1])
#     elif mask_type == 'channel_binomial':
#         mask = generate_binomial_mask(x.size(0), x.size(1), x.size(2), p=mask_ratio).to(x.device)
#     elif mask_type == 'continuous':
#         mask = generate_geometric_mask(x.size(0), x.size(1), p=mask_ratio, l=lm).to(x.device)
#         mask = expand_tensor(mask, x.shape[-1])
#     elif mask_type == 'channel_continuous':
#         mask = generate_geometric_mask(x.size(0), x.size(1), x.size(2), p=mask_ratio, l=lm).to(x.device)
#     elif mask_type == 'all_true':
#         mask = x.new_full((x.size(0), x.size(1)), True, dtype=torch.bool)
#     elif mask_type == 'all_false':
#         mask = x.new_full((x.size(0), x.size(1)), False, dtype=torch.bool)
#     elif mask_type == 'mask_last':
#         mask = x.new_full((x.size(0), x.size(1), x.size(2)), True, dtype=torch.bool)
#         idx = int(x.shape[1] * mask_ratio)
#         mask[:, -idx:, :] = False
#     else:
#         raise ValueError(f'\'{mask_type}\' is a wrong argument for mask function!')
#
#     x = mask * x
#
#     return x, mask # x: [b, s, c] mask: True: unmasked, False: masked


def patch_mask(x, mask_ratio, patch_len=12, stride=12):
    px = x.clone().permute(0, 2, 1)

    padding_patch_layer = nn.ReplicationPad1d((0, stride))
    px = padding_patch_layer(px)
    px = px.unfold(dimension=-1, size=patch_len, step=stride)
    px = torch.reshape(px, (px.shape[0] * px.shape[1], px.shape[2], px.shape[3]))

    mask = generate_binomial_mask(px.size(0), px.size(1), p=mask_ratio).to(x.device)

    return mask


def mask_function(x, args):
    b, s, c = x.shape

    if args.masked_rule == 'binomial':
        mask = generate_binomial_mask(x.size(0), x.size(1), p=args.mask_rate).to(x.device)
        mask = expand_tensor(mask, x.shape[-1])
    elif args.masked_rule == 'channel_binomial':
        mask = generate_binomial_mask(x.size(0), x.size(1), x.size(2), p=args.mask_rate).to(x.device)
    elif args.masked_rule == 'continuous':
        mask = generate_geometric_mask(x.size(0), x.size(1), p=args.mask_rate, l=args.lm).to(x.device)
        mask = expand_tensor(mask, x.shape[-1])
    elif args.masked_rule == 'channel_continuous':
        mask = generate_geometric_mask(x.size(0), x.size(1), x.size(2), p=args.mask_rate, l=args.lm).to(x.device)
    elif args.masked_rule == 'mask_last':
        mask = x.new_full((x.size(0), x.size(1), x.size(2)), True, dtype=torch.bool)
        idx = int(x.shape[1] * args.mask_rate)
        mask[:, -idx:, :] = False
    elif args.masked_rule == 'mask_patch':
        mask = patch_mask(x, args.mask_rate, args.patch_len, args.stride)
        mask = expand_tensor(mask, args.patch_len)
        mask = mask.reshape(b, c, -1)[:, :, :s].permute(0, 2, 1)
    else:
        raise ValueError(f'\'{args.mask_rate}\' is a wrong argument for mask function!')

    x = mask * x

    return x, mask  # x: [b, s, c] unmasked: True, masked, False

# MAE Masking
def random_masking(xb, mask_ratio=0.75):

    bs, L, nvars, D = xb.shape  # xb: [bs x num_patch x n_vars x patch_len]
    x = xb.clone()

    len_keep = int(L * (1 - mask_ratio))

    noise = torch.rand(bs, L, nvars, device=xb.device)  # noise in [0, 1], bs x L x nvars

    # sort noise for each sample
    ids_shuffle = torch.argsort(noise, dim=1)  # ascend: small is keep, large is remove
    ids_restore = torch.argsort(ids_shuffle, dim=1)  # ids_restore: [bs x L x nvars]

    # keep the first subset
    ids_keep = ids_shuffle[:, :len_keep, :]  # ids_keep: [bs x len_keep x nvars]
    x_kept = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, 1, D))  # x_kept: [bs x len_keep x nvars  x patch_len]

    # removed x
    x_removed = torch.zeros(bs, L - len_keep, nvars, D, device=xb.device)  # x_removed: [bs x (L-len_keep) x nvars x patch_len]
    x_ = torch.cat([x_kept, x_removed], dim=1)  # x_: [bs x L x nvars x patch_len]

    # combine the kept part and the removed one
    x_masked = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, 1, D))  # x_masked: [bs x num_patch x nvars x patch_len]


    # generate the binary mask: 0 is keep, 1 is remove
    mask = torch.ones([bs, L, nvars], device=x.device)  # mask: [bs x num_patch x nvars]
    mask[:, :len_keep, :] = 0
    # unshuffle to get the binary mask
    mask = torch.gather(mask, dim=1, index=ids_restore)  # [bs x num_patch x nvars]
    mask = mask.permute(0, 2, 1)
    mask = mask.reshape(-1, L) # [bs * nvars x num_patch]

    return x_masked, x_kept, mask, ids_restore

# MAE Masking
def random_masking_v2(xb, mask_ratio=0.75):

    bs, L, D = xb.shape  # [bs x n_vars x d_model]
    x = xb.clone()

    len_keep = int(L * (1 - mask_ratio))

    noise = torch.rand(bs, L, device=xb.device)  # noise in [0, 1], bs x L

    # sort noise for each sample
    ids_shuffle = torch.argsort(noise, dim=1)  # ascend: small is keep, large is remove
    ids_restore = torch.argsort(ids_shuffle, dim=1)  # ids_restore: [bs x L x nvars]

    # keep the first subset
    ids_keep = ids_shuffle[:, :len_keep]  # ids_keep: [bs x len_keep]
    x_kept = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))  # x_kept: [bs x len_keep x d_model]

    # removed x
    x_removed = torch.zeros(bs, L - len_keep, D, device=xb.device)  # x_removed: [bs x (L-len_keep) x d_model]
    x_ = torch.cat([x_kept, x_removed], dim=1)  # x_: [bs x L x d_model]

    # combine the kept part and the removed one
    x_masked = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, D))  # x_masked: [bs x L x d_model]


    # generate the binary mask: 0 is keep, 1 is remove
    mask = torch.ones([bs, L], device=x.device)  # mask: [bs x L]
    mask[:, :len_keep] = 0
    # unshuffle to get the binary mask
    mask = torch.gather(mask, dim=1, index=ids_restore)  # [bs x num_patch]

    return x_masked, x_kept, mask, ids_restore