Spaces:
Sleeping
Sleeping
File size: 11,936 Bytes
613de59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import os
import subprocess
import traceback
from datetime import datetime, timedelta
import gradio as gr
import numpy as np
import pandas as pd
import plotly.graph_objects as go
import pytz
from config import STATION_NAMES
from supabase_utils import (
get_harmonic_predictions, save_predictions_to_supabase, get_supabase_client
)
def get_common_args(station_id):
return [
"--model", "TimeXer", "--features", "MS", "--seq_len", "144", "--pred_len", "72",
"--label_len", "96", "--enc_in", "5", "--dec_in", "5", "--c_out", "1",
"--d_model", "256", "--d_ff", "512", "--n_heads", "8", "--e_layers", "1",
"--d_layers", "1", "--factor", "3", "--patch_len", "16", "--expand", "2", "--d_conv", "4"
]
def validate_csv_file(file_path, required_rows=144):
"""CSV 파일 유효성 검사"""
try:
df = pd.read_csv(file_path)
required_columns = ['date', 'air_pres', 'wind_dir', 'wind_speed', 'air_temp', 'residual']
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
return False, f"필수 컬럼이 누락되었습니다: {missing_columns}"
if len(df) < required_rows:
return False, f"데이터가 부족합니다. 최소 {required_rows}행 필요, 현재 {len(df)}행"
return True, "파일이 유효합니다."
except Exception as e:
return False, f"파일 읽기 오류: {str(e)}"
def execute_inference_and_get_results(command):
"""inference 실행하고 결과 파일을 읽어서 반환"""
try:
print(f"실행 명령어: {' '.join(command)}")
result = subprocess.run(command, capture_output=True, text=True, timeout=300)
if result.returncode != 0:
error_message = (
f"실행 실패 (Exit Code: {result.returncode}):\n\n"
f"--- 에러 로그 ---\n{result.stderr}\n\n"
f"--- 일반 출력 ---\n{result.stdout}"
)
raise gr.Error(error_message)
return True, result.stdout
except subprocess.TimeoutExpired:
raise gr.Error("실행 시간이 초과되었습니다. (5분 제한)")
except Exception as e:
raise gr.Error(f"내부 오류: {str(e)}")
def calculate_final_tide(residual_predictions, station_id, last_time):
"""잔차 예측 + 조화 예측 = 최종 조위 계산"""
if isinstance(last_time, pd.Timestamp):
last_time = last_time.to_pydatetime()
kst = pytz.timezone('Asia/Seoul')
if last_time.tzinfo is None:
last_time = kst.localize(last_time)
start_time = last_time + timedelta(minutes=5)
end_time = last_time + timedelta(minutes=72*5)
harmonic_data = get_harmonic_predictions(station_id, start_time, end_time)
residual_flat = residual_predictions.flatten()
num_points = len(residual_flat)
if not harmonic_data:
print("조화 예측 데이터를 찾을 수 없습니다. 잔차 예측만 반환합니다.")
return {
'times': [last_time + timedelta(minutes=(i+1)*5) for i in range(num_points)],
'residual': residual_flat.tolist(),
'harmonic': [0.0] * num_points,
'final_tide': residual_flat.tolist()
}
final_results = {
'times': [],
'residual': [],
'harmonic': [],
'final_tide': []
}
harmonic_dict = {}
for h_data in harmonic_data:
h_time_str = h_data['predicted_at']
try:
if 'T' in h_time_str:
if h_time_str.endswith('Z'):
h_time = datetime.fromisoformat(h_time_str[:-1] + '+00:00')
elif '+' in h_time_str or '-' in h_time_str[-6:]:
h_time = datetime.fromisoformat(h_time_str)
else:
h_time = datetime.fromisoformat(h_time_str + '+00:00')
else:
from dateutil import parser
h_time = parser.parse(h_time_str)
if h_time.tzinfo is None:
h_time = pytz.UTC.localize(h_time)
h_time = h_time.astimezone(kst)
except Exception as e:
print(f"시간 파싱 오류: {h_time_str}, {e}")
continue
minutes = (h_time.minute // 5) * 5
h_time = h_time.replace(minute=minutes, second=0, microsecond=0)
harmonic_value = float(h_data['harmonic_level'])
harmonic_dict[h_time] = harmonic_value
for i, residual in enumerate(residual_flat):
pred_time = last_time + timedelta(minutes=(i+1)*5)
pred_time = pred_time.replace(second=0, microsecond=0)
harmonic_value = harmonic_dict.get(pred_time, 0.0)
if harmonic_value == 0.0 and harmonic_dict:
min_diff = float('inf')
for h_time, h_val in harmonic_dict.items():
diff = abs((h_time - pred_time).total_seconds())
if diff < min_diff and diff < 300:
min_diff = diff
harmonic_value = h_val
final_tide = float(residual) + harmonic_value
final_results['times'].append(pred_time)
final_results['residual'].append(float(residual))
final_results['harmonic'].append(harmonic_value)
final_results['final_tide'].append(final_tide)
return final_results
def create_enhanced_prediction_plot(prediction_results, input_data, station_name):
"""잔차 + 조화 + 최종 조위를 모두 표시하는 향상된 플롯"""
try:
input_df = pd.read_csv(input_data.name)
input_df['date'] = pd.to_datetime(input_df['date'])
recent_data = input_df.tail(24)
future_times = pd.to_datetime(prediction_results['times'])
fig = go.Figure()
fig.add_trace(go.Scatter(
x=recent_data['date'],
y=recent_data['residual'],
mode='lines+markers',
name='실제 잔차조위',
line=dict(color='blue', width=2),
marker=dict(size=4)
))
fig.add_trace(go.Scatter(
x=future_times,
y=prediction_results['residual'],
mode='lines+markers',
name='잔차 예측',
line=dict(color='red', width=2, dash='dash'),
marker=dict(size=3)
))
if any(h != 0 for h in prediction_results['harmonic']):
fig.add_trace(go.Scatter(
x=future_times,
y=prediction_results['harmonic'],
mode='lines',
name='조화 예측',
line=dict(color='orange', width=2)
))
fig.add_trace(go.Scatter(
x=future_times,
y=prediction_results['final_tide'],
mode='lines+markers',
name='최종 조위',
line=dict(color='green', width=3),
marker=dict(size=4)
))
last_time = recent_data['date'].iloc[-1]
fig.add_annotation(
x=last_time,
y=0,
text="← 과거 | 미래 →",
showarrow=False,
yref="paper",
yshift=10,
font=dict(size=12, color="gray")
)
fig.update_layout(
title=f'{station_name} 통합 조위 예측 결과',
xaxis_title='시간',
yaxis_title='수위 (cm)',
hovermode='x unified',
height=600,
showlegend=True,
xaxis=dict(tickformat='%H:%M<br>%m/%d', gridcolor='lightgray', showgrid=True),
yaxis=dict(gridcolor='lightgray', showgrid=True),
plot_bgcolor='white'
)
return fig
except Exception as e:
print(f"Enhanced plot creation error: {e}")
traceback.print_exc()
fig = go.Figure()
fig.add_annotation(
text=f"시각화 생성 중 오류: {str(e)}",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False
)
return fig
def single_prediction(station_id, input_csv_file):
if input_csv_file is None:
raise gr.Error("예측을 위한 입력 파일을 업로드해주세요.")
is_valid, message = validate_csv_file(input_csv_file.name)
if not is_valid:
raise gr.Error(f"파일 오류: {message}")
station_name = STATION_NAMES.get(station_id, station_id)
common_args = get_common_args(station_id)
setting_name = f"long_term_forecast_{station_id}_144_72_TimeXer_TIDE_ftMS_sl144_ll96_pl72_dm256_nh8_el1_dl1_df512_expand2_dc4_fc3_ebtimeF_dtTrue_Exp_0"
checkpoint_path = f"./checkpoints/{setting_name}/checkpoint.pth"
scaler_path = f"./checkpoints/{setting_name}/scaler.gz"
if not os.path.exists(checkpoint_path):
raise gr.Error(f"모델 파일을 찾을 수 없습니다: {checkpoint_path}")
if not os.path.exists(scaler_path):
raise gr.Error(f"스케일러 파일을 찾을 수 없습니다: {scaler_path}")
command = ["python", "inference.py",
"--checkpoint_path", checkpoint_path,
"--scaler_path", scaler_path,
"--predict_input_file", input_csv_file.name] + common_args
gr.Info(f"{station_name}({station_id}) 통합 조위 예측을 실행중입니다...")
success, output = execute_inference_and_get_results(command)
try:
prediction_file = "pred_results/prediction_future.npy"
if os.path.exists(prediction_file):
residual_predictions = np.load(prediction_file)
input_df = pd.read_csv(input_csv_file.name)
input_df['date'] = pd.to_datetime(input_df['date'])
last_time = input_df['date'].iloc[-1]
prediction_results = calculate_final_tide(residual_predictions, station_id, last_time)
plot = create_enhanced_prediction_plot(prediction_results, input_csv_file, station_name)
has_harmonic = any(h != 0 for h in prediction_results['harmonic'])
if has_harmonic:
result_df = pd.DataFrame({
'예측 시간': [t.strftime('%Y-%m-%d %H:%M') for t in prediction_results['times']],
'잔차 예측 (cm)': [f"{val:.2f}" for val in prediction_results['residual']],
'조화 예측 (cm)': [f"{val:.2f}" for val in prediction_results['harmonic']],
'최종 조위 (cm)': [f"{val:.2f}" for val in prediction_results['final_tide']]
})
else:
result_df = pd.DataFrame({
'예측 시간': [t.strftime('%Y-%m-%d %H:%M') for t in prediction_results['times']],
'잔차 예측 (cm)': [f"{val:.2f}" for val in prediction_results['residual']]
})
saved_count = save_predictions_to_supabase(station_id, prediction_results)
if saved_count > 0:
save_message = f"\n💾 Supabase에 {saved_count}개 예측 결과 저장 완료!"
elif get_supabase_client() is None:
save_message = "\n⚠️ Supabase 연결 실패 (환경변수 확인 필요)"
else:
save_message = "\n⚠️ Supabase 저장 실패"
return plot, result_df, f"✅ 예측 완료!{save_message}\n\n{output}"
else:
return None, None, f"❌ 결과 파일을 찾을 수 없습니다.\n\n{output}"
except Exception as e:
print(f"Result processing error: {e}")
traceback.print_exc()
return None, None, f"❌ 결과 처리 중 오류: {str(e)}\n\n{output}" |