File size: 7,357 Bytes
e1ccef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import torch
import torch.nn as nn
import torch.nn.functional as F
import math

class Splitting(nn.Module):
    def __init__(self):
        super(Splitting, self).__init__()

    def even(self, x):
        return x[:, ::2, :]

    def odd(self, x):
        return x[:, 1::2, :]

    def forward(self, x):
        # return the odd and even part
        return self.even(x), self.odd(x)


class CausalConvBlock(nn.Module):
    def __init__(self, d_model, kernel_size=5, dropout=0.0):
        super(CausalConvBlock, self).__init__()
        module_list = [
            nn.ReplicationPad1d((kernel_size - 1, kernel_size - 1)),

            nn.Conv1d(d_model, d_model,
                      kernel_size=kernel_size),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),

            nn.Dropout(dropout),
            nn.Conv1d(d_model, d_model,
                      kernel_size=kernel_size),
            nn.Tanh()
        ]
        self.causal_conv = nn.Sequential(*module_list)

    def forward(self, x):
        return self.causal_conv(x)  # return value is the same as input dimension


class SCIBlock(nn.Module):
    def __init__(self, d_model, kernel_size=5, dropout=0.0):
        super(SCIBlock, self).__init__()
        self.splitting = Splitting()
        self.modules_even, self.modules_odd, self.interactor_even, self.interactor_odd = [CausalConvBlock(d_model) for _ in range(4)]

    def forward(self, x):
        x_even, x_odd = self.splitting(x)
        x_even = x_even.permute(0, 2, 1)
        x_odd = x_odd.permute(0, 2, 1)

        x_even_temp = x_even.mul(torch.exp(self.modules_even(x_odd)))
        x_odd_temp = x_odd.mul(torch.exp(self.modules_odd(x_even)))

        x_even_update = x_even_temp + self.interactor_even(x_odd_temp)
        x_odd_update = x_odd_temp - self.interactor_odd(x_even_temp)

        return x_even_update.permute(0, 2, 1), x_odd_update.permute(0, 2, 1)


class SCINet(nn.Module):
    def __init__(self, d_model, current_level=3, kernel_size=5, dropout=0.0):
        super(SCINet, self).__init__()
        self.current_level = current_level
        self.working_block = SCIBlock(d_model, kernel_size, dropout)

        if current_level != 0:
            self.SCINet_Tree_odd = SCINet(d_model, current_level-1, kernel_size, dropout)
            self.SCINet_Tree_even = SCINet(d_model, current_level-1, kernel_size, dropout)

    def forward(self, x):
        odd_flag = False
        if x.shape[1] % 2 == 1:
            odd_flag = True
            x = torch.cat((x, x[:, -1:, :]), dim=1)
        x_even_update, x_odd_update = self.working_block(x)
        if odd_flag:
            x_odd_update = x_odd_update[:, :-1]

        if self.current_level == 0:
            return self.zip_up_the_pants(x_even_update, x_odd_update)
        else:
            return self.zip_up_the_pants(self.SCINet_Tree_even(x_even_update), self.SCINet_Tree_odd(x_odd_update))

    def zip_up_the_pants(self, even, odd):
        even = even.permute(1, 0, 2)
        odd = odd.permute(1, 0, 2)
        even_len = even.shape[0]
        odd_len = odd.shape[0]
        min_len = min(even_len, odd_len)

        zipped_data = []
        for i in range(min_len):
            zipped_data.append(even[i].unsqueeze(0))
            zipped_data.append(odd[i].unsqueeze(0))
        if even_len > odd_len:
            zipped_data.append(even[-1].unsqueeze(0))
        return torch.cat(zipped_data,0).permute(1, 0, 2)


class Model(nn.Module):
    def __init__(self, configs):
        super(Model, self).__init__()
        self.task_name = configs.task_name
        self.seq_len = configs.seq_len
        self.label_len = configs.label_len
        self.pred_len = configs.pred_len

        # You can set the number of SCINet stacks by argument "d_layers", but should choose 1 or 2.
        self.num_stacks = configs.d_layers
        if self.num_stacks == 1:
            self.sci_net_1 = SCINet(configs.enc_in, dropout=configs.dropout)
            self.projection_1 = nn.Conv1d(self.seq_len, self.seq_len + self.pred_len, kernel_size=1, stride=1, bias=False)
        else:
            self.sci_net_1, self.sci_net_2 = [SCINet(configs.enc_in, dropout=configs.dropout) for _ in range(2)]
            self.projection_1 = nn.Conv1d(self.seq_len, self.pred_len, kernel_size=1, stride=1, bias=False)
            self.projection_2 = nn.Conv1d(self.seq_len+self.pred_len, self.seq_len+self.pred_len,
                                                kernel_size = 1, bias = False)

        # For positional encoding
        self.pe_hidden_size = configs.enc_in
        if self.pe_hidden_size % 2 == 1:
            self.pe_hidden_size += 1

        num_timescales = self.pe_hidden_size // 2
        max_timescale = 10000.0
        min_timescale = 1.0

        log_timescale_increment = (
                math.log(float(max_timescale) / float(min_timescale)) /
                max(num_timescales - 1, 1))
        inv_timescales = min_timescale * torch.exp(
            torch.arange(num_timescales, dtype=torch.float32) *
            -log_timescale_increment)
        self.register_buffer('inv_timescales', inv_timescales)

    def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
        if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
            dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)  # [B,pred_len,C]
            dec_out = torch.cat([torch.zeros_like(x_enc), dec_out], dim=1)
            return dec_out  # [B, T, D]
        return None

    def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
        # Normalization from Non-stationary Transformer
        means = x_enc.mean(1, keepdim=True).detach()
        x_enc = x_enc - means
        stdev = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
        x_enc /= stdev

        # position-encoding
        pe = self.get_position_encoding(x_enc)
        if pe.shape[2] > x_enc.shape[2]:
            x_enc += pe[:, :, :-1]
        else:
            x_enc += self.get_position_encoding(x_enc)

        # SCINet
        dec_out = self.sci_net_1(x_enc)
        dec_out += x_enc
        dec_out = self.projection_1(dec_out)
        if self.num_stacks != 1:
            dec_out = torch.cat((x_enc, dec_out), dim=1)
            temp = dec_out
            dec_out = self.sci_net_2(dec_out)
            dec_out += temp
            dec_out = self.projection_2(dec_out)

        # De-Normalization from Non-stationary Transformer
        dec_out = dec_out * \
                  (stdev[:, 0, :].unsqueeze(1).repeat(
                      1, self.pred_len + self.seq_len, 1))
        dec_out = dec_out + \
                  (means[:, 0, :].unsqueeze(1).repeat(
                      1, self.pred_len + self.seq_len, 1))
        return dec_out

    def get_position_encoding(self, x):
        max_length = x.size()[1]
        position = torch.arange(max_length, dtype=torch.float32,
                                device=x.device)  # tensor([0., 1., 2., 3., 4.], device='cuda:0')
        scaled_time = position.unsqueeze(1) * self.inv_timescales.unsqueeze(0)  # 5 256
        signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)  # [T, C]
        signal = F.pad(signal, (0, 0, 0, self.pe_hidden_size % 2))
        signal = signal.view(1, max_length, self.pe_hidden_size)

        return signal