Spaces:
Sleeping
Sleeping
File size: 13,374 Bytes
e1ccef5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import math
import torch
import torch.nn as nn
from data_provider.data_factory import data_provider
class FourierFilter(nn.Module):
"""
Fourier Filter: to time-variant and time-invariant term
"""
def __init__(self, mask_spectrum):
super(FourierFilter, self).__init__()
self.mask_spectrum = mask_spectrum
def forward(self, x):
xf = torch.fft.rfft(x, dim=1)
mask = torch.ones_like(xf)
mask[:, self.mask_spectrum, :] = 0
x_var = torch.fft.irfft(xf*mask, dim=1)
x_inv = x - x_var
return x_var, x_inv
class MLP(nn.Module):
'''
Multilayer perceptron to encode/decode high dimension representation of sequential data
'''
def __init__(self,
f_in,
f_out,
hidden_dim=128,
hidden_layers=2,
dropout=0.05,
activation='tanh'):
super(MLP, self).__init__()
self.f_in = f_in
self.f_out = f_out
self.hidden_dim = hidden_dim
self.hidden_layers = hidden_layers
self.dropout = dropout
if activation == 'relu':
self.activation = nn.ReLU()
elif activation == 'tanh':
self.activation = nn.Tanh()
else:
raise NotImplementedError
layers = [nn.Linear(self.f_in, self.hidden_dim),
self.activation, nn.Dropout(self.dropout)]
for i in range(self.hidden_layers-2):
layers += [nn.Linear(self.hidden_dim, self.hidden_dim),
self.activation, nn.Dropout(dropout)]
layers += [nn.Linear(hidden_dim, f_out)]
self.layers = nn.Sequential(*layers)
def forward(self, x):
# x: B x S x f_in
# y: B x S x f_out
y = self.layers(x)
return y
class KPLayer(nn.Module):
"""
A demonstration of finding one step transition of linear system by DMD iteratively
"""
def __init__(self):
super(KPLayer, self).__init__()
self.K = None # B E E
def one_step_forward(self, z, return_rec=False, return_K=False):
B, input_len, E = z.shape
assert input_len > 1, 'snapshots number should be larger than 1'
x, y = z[:, :-1], z[:, 1:]
# solve linear system
self.K = torch.linalg.lstsq(x, y).solution # B E E
if torch.isnan(self.K).any():
print('Encounter K with nan, replace K by identity matrix')
self.K = torch.eye(self.K.shape[1]).to(self.K.device).unsqueeze(0).repeat(B, 1, 1)
z_pred = torch.bmm(z[:, -1:], self.K)
if return_rec:
z_rec = torch.cat((z[:, :1], torch.bmm(x, self.K)), dim=1)
return z_rec, z_pred
return z_pred
def forward(self, z, pred_len=1):
assert pred_len >= 1, 'prediction length should not be less than 1'
z_rec, z_pred= self.one_step_forward(z, return_rec=True)
z_preds = [z_pred]
for i in range(1, pred_len):
z_pred = torch.bmm(z_pred, self.K)
z_preds.append(z_pred)
z_preds = torch.cat(z_preds, dim=1)
return z_rec, z_preds
class KPLayerApprox(nn.Module):
"""
Find koopman transition of linear system by DMD with multistep K approximation
"""
def __init__(self):
super(KPLayerApprox, self).__init__()
self.K = None # B E E
self.K_step = None # B E E
def forward(self, z, pred_len=1):
# z: B L E, koopman invariance space representation
# z_rec: B L E, reconstructed representation
# z_pred: B S E, forecasting representation
B, input_len, E = z.shape
assert input_len > 1, 'snapshots number should be larger than 1'
x, y = z[:, :-1], z[:, 1:]
# solve linear system
self.K = torch.linalg.lstsq(x, y).solution # B E E
if torch.isnan(self.K).any():
print('Encounter K with nan, replace K by identity matrix')
self.K = torch.eye(self.K.shape[1]).to(self.K.device).unsqueeze(0).repeat(B, 1, 1)
z_rec = torch.cat((z[:, :1], torch.bmm(x, self.K)), dim=1) # B L E
if pred_len <= input_len:
self.K_step = torch.linalg.matrix_power(self.K, pred_len)
if torch.isnan(self.K_step).any():
print('Encounter multistep K with nan, replace it by identity matrix')
self.K_step = torch.eye(self.K_step.shape[1]).to(self.K_step.device).unsqueeze(0).repeat(B, 1, 1)
z_pred = torch.bmm(z[:, -pred_len:, :], self.K_step)
else:
self.K_step = torch.linalg.matrix_power(self.K, input_len)
if torch.isnan(self.K_step).any():
print('Encounter multistep K with nan, replace it by identity matrix')
self.K_step = torch.eye(self.K_step.shape[1]).to(self.K_step.device).unsqueeze(0).repeat(B, 1, 1)
temp_z_pred, all_pred = z, []
for _ in range(math.ceil(pred_len / input_len)):
temp_z_pred = torch.bmm(temp_z_pred, self.K_step)
all_pred.append(temp_z_pred)
z_pred = torch.cat(all_pred, dim=1)[:, :pred_len, :]
return z_rec, z_pred
class TimeVarKP(nn.Module):
"""
Koopman Predictor with DMD (analysitical solution of Koopman operator)
Utilize local variations within individual sliding window to predict the future of time-variant term
"""
def __init__(self,
enc_in=8,
input_len=96,
pred_len=96,
seg_len=24,
dynamic_dim=128,
encoder=None,
decoder=None,
multistep=False,
):
super(TimeVarKP, self).__init__()
self.input_len = input_len
self.pred_len = pred_len
self.enc_in = enc_in
self.seg_len = seg_len
self.dynamic_dim = dynamic_dim
self.multistep = multistep
self.encoder, self.decoder = encoder, decoder
self.freq = math.ceil(self.input_len / self.seg_len) # segment number of input
self.step = math.ceil(self.pred_len / self.seg_len) # segment number of output
self.padding_len = self.seg_len * self.freq - self.input_len
# Approximate mulitstep K by KPLayerApprox when pred_len is large
self.dynamics = KPLayerApprox() if self.multistep else KPLayer()
def forward(self, x):
# x: B L C
B, L, C = x.shape
res = torch.cat((x[:, L-self.padding_len:, :], x) ,dim=1)
res = res.chunk(self.freq, dim=1) # F x B P C, P means seg_len
res = torch.stack(res, dim=1).reshape(B, self.freq, -1) # B F PC
res = self.encoder(res) # B F H
x_rec, x_pred = self.dynamics(res, self.step) # B F H, B S H
x_rec = self.decoder(x_rec) # B F PC
x_rec = x_rec.reshape(B, self.freq, self.seg_len, self.enc_in)
x_rec = x_rec.reshape(B, -1, self.enc_in)[:, :self.input_len, :] # B L C
x_pred = self.decoder(x_pred) # B S PC
x_pred = x_pred.reshape(B, self.step, self.seg_len, self.enc_in)
x_pred = x_pred.reshape(B, -1, self.enc_in)[:, :self.pred_len, :] # B S C
return x_rec, x_pred
class TimeInvKP(nn.Module):
"""
Koopman Predictor with learnable Koopman operator
Utilize lookback and forecast window snapshots to predict the future of time-invariant term
"""
def __init__(self,
input_len=96,
pred_len=96,
dynamic_dim=128,
encoder=None,
decoder=None):
super(TimeInvKP, self).__init__()
self.dynamic_dim = dynamic_dim
self.input_len = input_len
self.pred_len = pred_len
self.encoder = encoder
self.decoder = decoder
K_init = torch.randn(self.dynamic_dim, self.dynamic_dim)
U, _, V = torch.svd(K_init) # stable initialization
self.K = nn.Linear(self.dynamic_dim, self.dynamic_dim, bias=False)
self.K.weight.data = torch.mm(U, V.t())
def forward(self, x):
# x: B L C
res = x.transpose(1, 2) # B C L
res = self.encoder(res) # B C H
res = self.K(res) # B C H
res = self.decoder(res) # B C S
res = res.transpose(1, 2) # B S C
return res
class Model(nn.Module):
'''
Paper link: https://arxiv.org/pdf/2305.18803.pdf
'''
def __init__(self, configs, dynamic_dim=128, hidden_dim=64, hidden_layers=2, num_blocks=3, multistep=False):
"""
mask_spectrum: list, shared frequency spectrums
seg_len: int, segment length of time series
dynamic_dim: int, latent dimension of koopman embedding
hidden_dim: int, hidden dimension of en/decoder
hidden_layers: int, number of hidden layers of en/decoder
num_blocks: int, number of Koopa blocks
multistep: bool, whether to use approximation for multistep K
alpha: float, spectrum filter ratio
"""
super(Model, self).__init__()
self.task_name = configs.task_name
self.enc_in = configs.enc_in
self.input_len = configs.seq_len
self.pred_len = configs.pred_len
self.seg_len = self.pred_len
self.num_blocks = num_blocks
self.dynamic_dim = dynamic_dim
self.hidden_dim = hidden_dim
self.hidden_layers = hidden_layers
self.multistep = multistep
self.alpha = 0.2
self.mask_spectrum = self._get_mask_spectrum(configs)
self.disentanglement = FourierFilter(self.mask_spectrum)
# shared encoder/decoder to make koopman embedding consistent
self.time_inv_encoder = MLP(f_in=self.input_len, f_out=self.dynamic_dim, activation='relu',
hidden_dim=self.hidden_dim, hidden_layers=self.hidden_layers)
self.time_inv_decoder = MLP(f_in=self.dynamic_dim, f_out=self.pred_len, activation='relu',
hidden_dim=self.hidden_dim, hidden_layers=self.hidden_layers)
self.time_inv_kps = self.time_var_kps = nn.ModuleList([
TimeInvKP(input_len=self.input_len,
pred_len=self.pred_len,
dynamic_dim=self.dynamic_dim,
encoder=self.time_inv_encoder,
decoder=self.time_inv_decoder)
for _ in range(self.num_blocks)])
# shared encoder/decoder to make koopman embedding consistent
self.time_var_encoder = MLP(f_in=self.seg_len*self.enc_in, f_out=self.dynamic_dim, activation='tanh',
hidden_dim=self.hidden_dim, hidden_layers=self.hidden_layers)
self.time_var_decoder = MLP(f_in=self.dynamic_dim, f_out=self.seg_len*self.enc_in, activation='tanh',
hidden_dim=self.hidden_dim, hidden_layers=self.hidden_layers)
self.time_var_kps = nn.ModuleList([
TimeVarKP(enc_in=configs.enc_in,
input_len=self.input_len,
pred_len=self.pred_len,
seg_len=self.seg_len,
dynamic_dim=self.dynamic_dim,
encoder=self.time_var_encoder,
decoder=self.time_var_decoder,
multistep=self.multistep)
for _ in range(self.num_blocks)])
def _get_mask_spectrum(self, configs):
"""
get shared frequency spectrums
"""
train_data, train_loader = data_provider(configs, 'train')
amps = 0.0
for data in train_loader:
lookback_window = data[0]
amps += abs(torch.fft.rfft(lookback_window, dim=1)).mean(dim=0).mean(dim=1)
mask_spectrum = amps.topk(int(amps.shape[0]*self.alpha)).indices
return mask_spectrum # as the spectrums of time-invariant component
def forecast(self, x_enc):
# Series Stationarization adopted from NSformer
mean_enc = x_enc.mean(1, keepdim=True).detach() # B x 1 x E
x_enc = x_enc - mean_enc
std_enc = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5).detach()
x_enc = x_enc / std_enc
# Koopman Forecasting
residual, forecast = x_enc, None
for i in range(self.num_blocks):
time_var_input, time_inv_input = self.disentanglement(residual)
time_inv_output = self.time_inv_kps[i](time_inv_input)
time_var_backcast, time_var_output = self.time_var_kps[i](time_var_input)
residual = residual - time_var_backcast
if forecast is None:
forecast = (time_inv_output + time_var_output)
else:
forecast += (time_inv_output + time_var_output)
# Series Stationarization adopted from NSformer
res = forecast * std_enc + mean_enc
return res
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
if self.task_name == 'long_term_forecast':
dec_out = self.forecast(x_enc)
return dec_out[:, -self.pred_len:, :] # [B, L, D]
|