File size: 7,816 Bytes
e1ccef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from data_provider.data_factory import data_provider
from exp.exp_basic import Exp_Basic
from utils.tools import EarlyStopping, adjust_learning_rate, adjustment
from sklearn.metrics import precision_recall_fscore_support
from sklearn.metrics import accuracy_score
import torch.multiprocessing

torch.multiprocessing.set_sharing_strategy('file_system')
import torch
import torch.nn as nn
from torch import optim
import os
import time
import warnings
import numpy as np

warnings.filterwarnings('ignore')


class Exp_Anomaly_Detection(Exp_Basic):
    def __init__(self, args):
        super(Exp_Anomaly_Detection, self).__init__(args)

    def _build_model(self):
        model = self.model_dict[self.args.model].Model(self.args).float()

        if self.args.use_multi_gpu and self.args.use_gpu:
            model = nn.DataParallel(model, device_ids=self.args.device_ids)
        return model

    def _get_data(self, flag):
        data_set, data_loader = data_provider(self.args, flag)
        return data_set, data_loader

    def _select_optimizer(self):
        model_optim = optim.Adam(self.model.parameters(), lr=self.args.learning_rate)
        return model_optim

    def _select_criterion(self):
        criterion = nn.MSELoss()
        return criterion

    def vali(self, vali_data, vali_loader, criterion):
        total_loss = []
        self.model.eval()
        with torch.no_grad():
            for i, (batch_x, _) in enumerate(vali_loader):
                batch_x = batch_x.float().to(self.device)

                outputs = self.model(batch_x, None, None, None)

                f_dim = -1 if self.args.features == 'MS' else 0
                outputs = outputs[:, :, f_dim:]
                pred = outputs.detach().cpu()
                true = batch_x.detach().cpu()

                loss = criterion(pred, true)
                total_loss.append(loss)
        total_loss = np.average(total_loss)
        self.model.train()
        return total_loss

    def train(self, setting):
        train_data, train_loader = self._get_data(flag='train')
        vali_data, vali_loader = self._get_data(flag='val')
        test_data, test_loader = self._get_data(flag='test')

        path = os.path.join(self.args.checkpoints, setting)
        if not os.path.exists(path):
            os.makedirs(path)

        time_now = time.time()

        train_steps = len(train_loader)
        early_stopping = EarlyStopping(patience=self.args.patience, verbose=True)

        model_optim = self._select_optimizer()
        criterion = self._select_criterion()

        for epoch in range(self.args.train_epochs):
            iter_count = 0
            train_loss = []

            self.model.train()
            epoch_time = time.time()
            for i, (batch_x, batch_y) in enumerate(train_loader):
                iter_count += 1
                model_optim.zero_grad()

                batch_x = batch_x.float().to(self.device)

                outputs = self.model(batch_x, None, None, None)

                f_dim = -1 if self.args.features == 'MS' else 0
                outputs = outputs[:, :, f_dim:]
                loss = criterion(outputs, batch_x)
                train_loss.append(loss.item())

                if (i + 1) % 100 == 0:
                    print("\titers: {0}, epoch: {1} | loss: {2:.7f}".format(i + 1, epoch + 1, loss.item()))
                    speed = (time.time() - time_now) / iter_count
                    left_time = speed * ((self.args.train_epochs - epoch) * train_steps - i)
                    print('\tspeed: {:.4f}s/iter; left time: {:.4f}s'.format(speed, left_time))
                    iter_count = 0
                    time_now = time.time()

                loss.backward()
                model_optim.step()

            print("Epoch: {} cost time: {}".format(epoch + 1, time.time() - epoch_time))
            train_loss = np.average(train_loss)
            vali_loss = self.vali(vali_data, vali_loader, criterion)
            test_loss = self.vali(test_data, test_loader, criterion)

            print("Epoch: {0}, Steps: {1} | Train Loss: {2:.7f} Vali Loss: {3:.7f} Test Loss: {4:.7f}".format(
                epoch + 1, train_steps, train_loss, vali_loss, test_loss))
            early_stopping(vali_loss, self.model, path)
            if early_stopping.early_stop:
                print("Early stopping")
                break
            adjust_learning_rate(model_optim, epoch + 1, self.args)

        best_model_path = path + '/' + 'checkpoint.pth'
        self.model.load_state_dict(torch.load(best_model_path))

        return self.model

    def test(self, setting, test=0):
        test_data, test_loader = self._get_data(flag='test')
        train_data, train_loader = self._get_data(flag='train')
        if test:
            print('loading model')
            self.model.load_state_dict(torch.load(os.path.join('./checkpoints/' + setting, 'checkpoint.pth')))

        attens_energy = []
        folder_path = './test_results/' + setting + '/'
        if not os.path.exists(folder_path):
            os.makedirs(folder_path)

        self.model.eval()
        self.anomaly_criterion = nn.MSELoss(reduce=False)

        # (1) stastic on the train set
        with torch.no_grad():
            for i, (batch_x, batch_y) in enumerate(train_loader):
                batch_x = batch_x.float().to(self.device)
                # reconstruction
                outputs = self.model(batch_x, None, None, None)
                # criterion
                score = torch.mean(self.anomaly_criterion(batch_x, outputs), dim=-1)
                score = score.detach().cpu().numpy()
                attens_energy.append(score)

        attens_energy = np.concatenate(attens_energy, axis=0).reshape(-1)
        train_energy = np.array(attens_energy)

        # (2) find the threshold
        attens_energy = []
        test_labels = []
        for i, (batch_x, batch_y) in enumerate(test_loader):
            batch_x = batch_x.float().to(self.device)
            # reconstruction
            outputs = self.model(batch_x, None, None, None)
            # criterion
            score = torch.mean(self.anomaly_criterion(batch_x, outputs), dim=-1)
            score = score.detach().cpu().numpy()
            attens_energy.append(score)
            test_labels.append(batch_y)

        attens_energy = np.concatenate(attens_energy, axis=0).reshape(-1)
        test_energy = np.array(attens_energy)
        combined_energy = np.concatenate([train_energy, test_energy], axis=0)
        threshold = np.percentile(combined_energy, 100 - self.args.anomaly_ratio)
        print("Threshold :", threshold)

        # (3) evaluation on the test set
        pred = (test_energy > threshold).astype(int)
        test_labels = np.concatenate(test_labels, axis=0).reshape(-1)
        test_labels = np.array(test_labels)
        gt = test_labels.astype(int)

        print("pred:   ", pred.shape)
        print("gt:     ", gt.shape)

        # (4) detection adjustment
        gt, pred = adjustment(gt, pred)

        pred = np.array(pred)
        gt = np.array(gt)
        print("pred: ", pred.shape)
        print("gt:   ", gt.shape)

        accuracy = accuracy_score(gt, pred)
        precision, recall, f_score, support = precision_recall_fscore_support(gt, pred, average='binary')
        print("Accuracy : {:0.4f}, Precision : {:0.4f}, Recall : {:0.4f}, F-score : {:0.4f} ".format(
            accuracy, precision,
            recall, f_score))

        f = open("result_anomaly_detection.txt", 'a')
        f.write(setting + "  \n")
        f.write("Accuracy : {:0.4f}, Precision : {:0.4f}, Recall : {:0.4f}, F-score : {:0.4f} ".format(
            accuracy, precision,
            recall, f_score))
        f.write('\n')
        f.write('\n')
        f.close()
        return