File size: 10,331 Bytes
e1ccef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
from data_provider.data_factory import data_provider
from data_provider.m4 import M4Meta
from exp.exp_basic import Exp_Basic
from utils.tools import EarlyStopping, adjust_learning_rate, visual
from utils.losses import mape_loss, mase_loss, smape_loss
from utils.m4_summary import M4Summary
import torch
import torch.nn as nn
from torch import optim
import os
import time
import warnings
import numpy as np
import pandas

warnings.filterwarnings('ignore')


class Exp_Short_Term_Forecast(Exp_Basic):
    def __init__(self, args):
        super(Exp_Short_Term_Forecast, self).__init__(args)

    def _build_model(self):
        if self.args.data == 'm4':
            self.args.pred_len = M4Meta.horizons_map[self.args.seasonal_patterns]  # Up to M4 config
            self.args.seq_len = 2 * self.args.pred_len  # input_len = 2*pred_len
            self.args.label_len = self.args.pred_len
            self.args.frequency_map = M4Meta.frequency_map[self.args.seasonal_patterns]
        model = self.model_dict[self.args.model].Model(self.args).float()

        if self.args.use_multi_gpu and self.args.use_gpu:
            model = nn.DataParallel(model, device_ids=self.args.device_ids)
        return model

    def _get_data(self, flag):
        data_set, data_loader = data_provider(self.args, flag)
        return data_set, data_loader

    def _select_optimizer(self):
        model_optim = optim.Adam(self.model.parameters(), lr=self.args.learning_rate)
        return model_optim

    def _select_criterion(self, loss_name='MSE'):
        if loss_name == 'MSE':
            return nn.MSELoss()
        elif loss_name == 'MAPE':
            return mape_loss()
        elif loss_name == 'MASE':
            return mase_loss()
        elif loss_name == 'SMAPE':
            return smape_loss()

    def train(self, setting):
        train_data, train_loader = self._get_data(flag='train')
        vali_data, vali_loader = self._get_data(flag='val')

        path = os.path.join(self.args.checkpoints, setting)
        if not os.path.exists(path):
            os.makedirs(path)

        time_now = time.time()

        train_steps = len(train_loader)
        early_stopping = EarlyStopping(patience=self.args.patience, verbose=True)

        model_optim = self._select_optimizer()
        criterion = self._select_criterion(self.args.loss)
        mse = nn.MSELoss()

        for epoch in range(self.args.train_epochs):
            iter_count = 0
            train_loss = []

            self.model.train()
            epoch_time = time.time()
            for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(train_loader):
                iter_count += 1
                model_optim.zero_grad()
                batch_x = batch_x.float().to(self.device)

                batch_y = batch_y.float().to(self.device)
                batch_y_mark = batch_y_mark.float().to(self.device)

                # decoder input
                dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float()
                dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device)

                outputs = self.model(batch_x, None, dec_inp, None)

                f_dim = -1 if self.args.features == 'MS' else 0
                outputs = outputs[:, -self.args.pred_len:, f_dim:]
                batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device)

                batch_y_mark = batch_y_mark[:, -self.args.pred_len:, f_dim:].to(self.device)
                loss_value = criterion(batch_x, self.args.frequency_map, outputs, batch_y, batch_y_mark)
                loss_sharpness = mse((outputs[:, 1:, :] - outputs[:, :-1, :]), (batch_y[:, 1:, :] - batch_y[:, :-1, :]))
                loss = loss_value  # + loss_sharpness * 1e-5
                train_loss.append(loss.item())

                if (i + 1) % 100 == 0:
                    print("\titers: {0}, epoch: {1} | loss: {2:.7f}".format(i + 1, epoch + 1, loss.item()))
                    speed = (time.time() - time_now) / iter_count
                    left_time = speed * ((self.args.train_epochs - epoch) * train_steps - i)
                    print('\tspeed: {:.4f}s/iter; left time: {:.4f}s'.format(speed, left_time))
                    iter_count = 0
                    time_now = time.time()

                loss.backward()
                model_optim.step()

            print("Epoch: {} cost time: {}".format(epoch + 1, time.time() - epoch_time))
            train_loss = np.average(train_loss)
            vali_loss = self.vali(train_loader, vali_loader, criterion)
            test_loss = vali_loss
            print("Epoch: {0}, Steps: {1} | Train Loss: {2:.7f} Vali Loss: {3:.7f} Test Loss: {4:.7f}".format(
                epoch + 1, train_steps, train_loss, vali_loss, test_loss))
            early_stopping(vali_loss, self.model, path)
            if early_stopping.early_stop:
                print("Early stopping")
                break

            adjust_learning_rate(model_optim, epoch + 1, self.args)

        best_model_path = path + '/' + 'checkpoint.pth'
        self.model.load_state_dict(torch.load(best_model_path))

        return self.model

    def vali(self, train_loader, vali_loader, criterion):
        x, _ = train_loader.dataset.last_insample_window()
        y = vali_loader.dataset.timeseries
        x = torch.tensor(x, dtype=torch.float32).to(self.device)
        x = x.unsqueeze(-1)

        self.model.eval()
        with torch.no_grad():
            # decoder input
            B, _, C = x.shape
            dec_inp = torch.zeros((B, self.args.pred_len, C)).float().to(self.device)
            dec_inp = torch.cat([x[:, -self.args.label_len:, :], dec_inp], dim=1).float()
            # encoder - decoder
            outputs = torch.zeros((B, self.args.pred_len, C)).float()  # .to(self.device)
            id_list = np.arange(0, B, 500)  # validation set size
            id_list = np.append(id_list, B)
            for i in range(len(id_list) - 1):
                outputs[id_list[i]:id_list[i + 1], :, :] = self.model(x[id_list[i]:id_list[i + 1]], None,
                                                                      dec_inp[id_list[i]:id_list[i + 1]],
                                                                      None).detach().cpu()
            f_dim = -1 if self.args.features == 'MS' else 0
            outputs = outputs[:, -self.args.pred_len:, f_dim:]
            pred = outputs
            true = torch.from_numpy(np.array(y))
            batch_y_mark = torch.ones(true.shape)

            loss = criterion(x.detach().cpu()[:, :, 0], self.args.frequency_map, pred[:, :, 0], true, batch_y_mark)

        self.model.train()
        return loss

    def test(self, setting, test=0):
        _, train_loader = self._get_data(flag='train')
        _, test_loader = self._get_data(flag='test')
        x, _ = train_loader.dataset.last_insample_window()
        y = test_loader.dataset.timeseries
        x = torch.tensor(x, dtype=torch.float32).to(self.device)
        x = x.unsqueeze(-1)

        if test:
            print('loading model')
            self.model.load_state_dict(torch.load(os.path.join('./checkpoints/' + setting, 'checkpoint.pth')))

        folder_path = './test_results/' + setting + '/'
        if not os.path.exists(folder_path):
            os.makedirs(folder_path)

        self.model.eval()
        with torch.no_grad():
            B, _, C = x.shape
            dec_inp = torch.zeros((B, self.args.pred_len, C)).float().to(self.device)
            dec_inp = torch.cat([x[:, -self.args.label_len:, :], dec_inp], dim=1).float()
            # encoder - decoder
            outputs = torch.zeros((B, self.args.pred_len, C)).float().to(self.device)
            id_list = np.arange(0, B, 1)
            id_list = np.append(id_list, B)
            for i in range(len(id_list) - 1):
                outputs[id_list[i]:id_list[i + 1], :, :] = self.model(x[id_list[i]:id_list[i + 1]], None,
                                                                      dec_inp[id_list[i]:id_list[i + 1]], None)

                if id_list[i] % 1000 == 0:
                    print(id_list[i])

            f_dim = -1 if self.args.features == 'MS' else 0
            outputs = outputs[:, -self.args.pred_len:, f_dim:]
            outputs = outputs.detach().cpu().numpy()

            preds = outputs
            trues = y
            x = x.detach().cpu().numpy()

            for i in range(0, preds.shape[0], preds.shape[0] // 10):
                gt = np.concatenate((x[i, :, 0], trues[i]), axis=0)
                pd = np.concatenate((x[i, :, 0], preds[i, :, 0]), axis=0)
                visual(gt, pd, os.path.join(folder_path, str(i) + '.pdf'))

        print('test shape:', preds.shape)

        # result save
        folder_path = './m4_results/' + self.args.model + '/'
        if not os.path.exists(folder_path):
            os.makedirs(folder_path)

        forecasts_df = pandas.DataFrame(preds[:, :, 0], columns=[f'V{i + 1}' for i in range(self.args.pred_len)])
        forecasts_df.index = test_loader.dataset.ids[:preds.shape[0]]
        forecasts_df.index.name = 'id'
        forecasts_df.set_index(forecasts_df.columns[0], inplace=True)
        forecasts_df.to_csv(folder_path + self.args.seasonal_patterns + '_forecast.csv')

        print(self.args.model)
        file_path = './m4_results/' + self.args.model + '/'
        if 'Weekly_forecast.csv' in os.listdir(file_path) \
                and 'Monthly_forecast.csv' in os.listdir(file_path) \
                and 'Yearly_forecast.csv' in os.listdir(file_path) \
                and 'Daily_forecast.csv' in os.listdir(file_path) \
                and 'Hourly_forecast.csv' in os.listdir(file_path) \
                and 'Quarterly_forecast.csv' in os.listdir(file_path):
            m4_summary = M4Summary(file_path, self.args.root_path)
            # m4_forecast.set_index(m4_winner_forecast.columns[0], inplace=True)
            smape_results, owa_results, mape, mase = m4_summary.evaluate()
            print('smape:', smape_results)
            print('mape:', mape)
            print('mase:', mase)
            print('owa:', owa_results)
        else:
            print('After all 6 tasks are finished, you can calculate the averaged index')
        return