File size: 5,735 Bytes
e1ccef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import torch
import torch.nn as nn
import torch.nn.functional as F
from layers.Transformer_EncDec import Encoder, EncoderLayer
from layers.SelfAttention_Family import FullAttention, AttentionLayer
from layers.Embed import DataEmbedding_inverted
import numpy as np


class Model(nn.Module):
    """
    Paper link: https://arxiv.org/abs/2310.06625
    """

    def __init__(self, configs):
        super(Model, self).__init__()
        self.task_name = configs.task_name
        self.seq_len = configs.seq_len
        self.pred_len = configs.pred_len
        # Embedding
        self.enc_embedding = DataEmbedding_inverted(configs.seq_len, configs.d_model, configs.embed, configs.freq,
                                                    configs.dropout)
        # Encoder
        self.encoder = Encoder(
            [
                EncoderLayer(
                    AttentionLayer(
                        FullAttention(False, configs.factor, attention_dropout=configs.dropout,
                                      output_attention=False), configs.d_model, configs.n_heads),
                    configs.d_model,
                    configs.d_ff,
                    dropout=configs.dropout,
                    activation=configs.activation
                ) for l in range(configs.e_layers)
            ],
            norm_layer=torch.nn.LayerNorm(configs.d_model)
        )
        # Decoder
        if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
            self.projection = nn.Linear(configs.d_model, configs.pred_len, bias=True)
        if self.task_name == 'imputation':
            self.projection = nn.Linear(configs.d_model, configs.seq_len, bias=True)
        if self.task_name == 'anomaly_detection':
            self.projection = nn.Linear(configs.d_model, configs.seq_len, bias=True)
        if self.task_name == 'classification':
            self.act = F.gelu
            self.dropout = nn.Dropout(configs.dropout)
            self.projection = nn.Linear(configs.d_model * configs.enc_in, configs.num_class)

    def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
        # Normalization from Non-stationary Transformer
        means = x_enc.mean(1, keepdim=True).detach()
        x_enc = x_enc - means
        stdev = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
        x_enc /= stdev

        _, _, N = x_enc.shape

        # Embedding
        enc_out = self.enc_embedding(x_enc, x_mark_enc)
        enc_out, attns = self.encoder(enc_out, attn_mask=None)

        dec_out = self.projection(enc_out).permute(0, 2, 1)[:, :, :N]
        # De-Normalization from Non-stationary Transformer
        dec_out = dec_out * (stdev[:, 0, :].unsqueeze(1).repeat(1, self.pred_len, 1))
        dec_out = dec_out + (means[:, 0, :].unsqueeze(1).repeat(1, self.pred_len, 1))
        return dec_out

    def imputation(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask):
        # Normalization from Non-stationary Transformer
        means = x_enc.mean(1, keepdim=True).detach()
        x_enc = x_enc - means
        stdev = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
        x_enc /= stdev

        _, L, N = x_enc.shape

        # Embedding
        enc_out = self.enc_embedding(x_enc, x_mark_enc)
        enc_out, attns = self.encoder(enc_out, attn_mask=None)

        dec_out = self.projection(enc_out).permute(0, 2, 1)[:, :, :N]
        # De-Normalization from Non-stationary Transformer
        dec_out = dec_out * (stdev[:, 0, :].unsqueeze(1).repeat(1, L, 1))
        dec_out = dec_out + (means[:, 0, :].unsqueeze(1).repeat(1, L, 1))
        return dec_out

    def anomaly_detection(self, x_enc):
        # Normalization from Non-stationary Transformer
        means = x_enc.mean(1, keepdim=True).detach()
        x_enc = x_enc - means
        stdev = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
        x_enc /= stdev

        _, L, N = x_enc.shape

        # Embedding
        enc_out = self.enc_embedding(x_enc, None)
        enc_out, attns = self.encoder(enc_out, attn_mask=None)

        dec_out = self.projection(enc_out).permute(0, 2, 1)[:, :, :N]
        # De-Normalization from Non-stationary Transformer
        dec_out = dec_out * (stdev[:, 0, :].unsqueeze(1).repeat(1, L, 1))
        dec_out = dec_out + (means[:, 0, :].unsqueeze(1).repeat(1, L, 1))
        return dec_out

    def classification(self, x_enc, x_mark_enc):
        # Embedding
        enc_out = self.enc_embedding(x_enc, None)
        enc_out, attns = self.encoder(enc_out, attn_mask=None)

        # Output
        output = self.act(enc_out)  # the output transformer encoder/decoder embeddings don't include non-linearity
        output = self.dropout(output)
        output = output.reshape(output.shape[0], -1)  # (batch_size, c_in * d_model)
        output = self.projection(output)  # (batch_size, num_classes)
        return output

    def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
        if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
            dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
            return dec_out[:, -self.pred_len:, :]  # [B, L, D]
        if self.task_name == 'imputation':
            dec_out = self.imputation(x_enc, x_mark_enc, x_dec, x_mark_dec, mask)
            return dec_out  # [B, L, D]
        if self.task_name == 'anomaly_detection':
            dec_out = self.anomaly_detection(x_enc)
            return dec_out  # [B, L, D]
        if self.task_name == 'classification':
            dec_out = self.classification(x_enc, x_mark_enc)
            return dec_out  # [B, N]
        return None