Spaces:
Sleeping
Sleeping
File size: 9,259 Bytes
e1ccef5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from layers.SelfAttention_Family import FullAttention, AttentionLayer
from layers.Embed import DataEmbedding_inverted, PositionalEmbedding
import numpy as np
class FlattenHead(nn.Module):
def __init__(self, n_vars, nf, target_window, head_dropout=0):
super().__init__()
self.n_vars = n_vars
self.flatten = nn.Flatten(start_dim=-2)
self.linear = nn.Linear(nf, target_window)
self.dropout = nn.Dropout(head_dropout)
def forward(self, x): # x: [bs x nvars x d_model x patch_num]
x = self.flatten(x)
x = self.linear(x)
x = self.dropout(x)
return x
class EnEmbedding(nn.Module):
def __init__(self, n_vars, d_model, patch_len, dropout):
super(EnEmbedding, self).__init__()
# Patching
self.patch_len = patch_len
self.value_embedding = nn.Linear(patch_len, d_model, bias=False)
self.glb_token = nn.Parameter(torch.randn(1, n_vars, 1, d_model))
self.position_embedding = PositionalEmbedding(d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# do patching
n_vars = x.shape[1]
glb = self.glb_token.repeat((x.shape[0], 1, 1, 1))
x = x.unfold(dimension=-1, size=self.patch_len, step=self.patch_len)
x = torch.reshape(x, (x.shape[0] * x.shape[1], x.shape[2], x.shape[3]))
# Input encoding
x = self.value_embedding(x) + self.position_embedding(x)
x = torch.reshape(x, (-1, n_vars, x.shape[-2], x.shape[-1]))
x = torch.cat([x, glb], dim=2)
x = torch.reshape(x, (x.shape[0] * x.shape[1], x.shape[2], x.shape[3]))
return self.dropout(x), n_vars
class Encoder(nn.Module):
def __init__(self, layers, norm_layer=None, projection=None):
super(Encoder, self).__init__()
self.layers = nn.ModuleList(layers)
self.norm = norm_layer
self.projection = projection
def forward(self, x, cross, x_mask=None, cross_mask=None, tau=None, delta=None):
attns = []
for layer in self.layers:
x, attn = layer(x, cross, x_mask=x_mask, cross_mask=cross_mask, tau=tau, delta=delta)
attns.append(attn)
if self.norm is not None:
x = self.norm(x)
if self.projection is not None:
x = self.projection(x)
return x, attns
class EncoderLayer(nn.Module):
def __init__(self, self_attention, cross_attention, d_model, d_ff=None,
dropout=0.1, activation="relu"):
super(EncoderLayer, self).__init__()
d_ff = d_ff or 4 * d_model
self.self_attention = self_attention
self.cross_attention = cross_attention
self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
self.activation = F.relu if activation == "relu" else F.gelu
def forward(self, x, cross, x_mask=None, cross_mask=None, tau=None, delta=None):
B, L, D = cross.shape
x = x + self.dropout(self.self_attention(
x, x, x,
attn_mask=x_mask,
tau=tau, delta=None
)[0])
x = self.norm1(x)
x_glb_ori = x[:, -1, :].unsqueeze(1)
x_glb = torch.reshape(x_glb_ori, (B, -1, D))
# <<< FIX: Capture attention weights from cross_attention >>>
x_glb_attn, cross_attn_weights = self.cross_attention(
x_glb, cross, cross,
attn_mask=cross_mask,
tau=tau, delta=delta
)
x_glb_attn = self.dropout(x_glb_attn)
x_glb_attn = torch.reshape(x_glb_attn,
(x_glb_attn.shape[0] * x_glb_attn.shape[1], x_glb_attn.shape[2])).unsqueeze(1)
x_glb = x_glb_ori + x_glb_attn
x_glb = self.norm2(x_glb)
y = x = torch.cat([x[:, :-1, :], x_glb], dim=1)
y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1))))
y = self.dropout(self.conv2(y).transpose(-1, 1))
# <<< FIX: Return captured attention weights >>>
return self.norm3(x + y), cross_attn_weights
class Model(nn.Module):
def __init__(self, configs):
super(Model, self).__init__()
self.task_name = configs.task_name
self.features = configs.features
self.seq_len = configs.seq_len
self.pred_len = configs.pred_len
self.use_norm = configs.use_norm
self.patch_len = configs.patch_len
self.patch_num = int(configs.seq_len // configs.patch_len)
self.n_vars = 1 if configs.features == 'MS' else configs.enc_in
# Embedding
self.en_embedding = EnEmbedding(self.n_vars, configs.d_model, self.patch_len, configs.dropout)
self.ex_embedding = DataEmbedding_inverted(configs.seq_len, configs.d_model, configs.embed, configs.freq,
configs.dropout)
# Encoder-only architecture
self.encoder = Encoder(
[
EncoderLayer(
AttentionLayer( # Self-Attention
FullAttention(False, configs.factor, attention_dropout=configs.dropout,
output_attention=False), # This remains False
configs.d_model, configs.n_heads),
AttentionLayer( # Cross-Attention
FullAttention(False, configs.factor, attention_dropout=configs.dropout,
output_attention=True), # <<< FIX: This is set to True >>>
configs.d_model, configs.n_heads),
configs.d_model,
configs.d_ff,
dropout=configs.dropout,
activation=configs.activation,
)
for l in range(configs.e_layers)
],
norm_layer=torch.nn.LayerNorm(configs.d_model)
)
self.head_nf = configs.d_model * (self.patch_num + 1)
self.head = FlattenHead(configs.enc_in, self.head_nf, configs.pred_len,
head_dropout=configs.dropout)
def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
if self.use_norm:
means = x_enc.mean(1, keepdim=True).detach()
x_enc = x_enc - means
stdev = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
x_enc /= stdev
_, _, N = x_enc.shape
en_embed, n_vars = self.en_embedding(x_enc[:, :, -1].unsqueeze(-1).permute(0, 2, 1))
ex_embed = self.ex_embedding(x_enc[:, :, :-1], x_mark_enc)
# <<< FIX: Capture attentions from encoder >>>
enc_out, attns = self.encoder(en_embed, ex_embed)
enc_out = torch.reshape(
enc_out, (-1, n_vars, enc_out.shape[-2], enc_out.shape[-1]))
enc_out = enc_out.permute(0, 1, 3, 2)
dec_out = self.head(enc_out)
dec_out = dec_out.permute(0, 2, 1)
if self.use_norm:
dec_out = dec_out * (stdev[:, 0, -1:].unsqueeze(1).repeat(1, self.pred_len, 1))
dec_out = dec_out + (means[:, 0, -1:].unsqueeze(1).repeat(1, self.pred_len, 1))
# <<< FIX: Return attentions >>>
return dec_out, attns
def forecast_multi(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
if self.use_norm:
means = x_enc.mean(1, keepdim=True).detach()
x_enc = x_enc - means
stdev = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
x_enc /= stdev
_, _, N = x_enc.shape
en_embed, n_vars = self.en_embedding(x_enc.permute(0, 2, 1))
ex_embed = self.ex_embedding(x_enc, x_mark_enc)
# <<< FIX: Capture attentions from encoder >>>
enc_out, attns = self.encoder(en_embed, ex_embed)
enc_out = torch.reshape(
enc_out, (-1, n_vars, enc_out.shape[-2], enc_out.shape[-1]))
enc_out = enc_out.permute(0, 1, 3, 2)
dec_out = self.head(enc_out)
dec_out = dec_out.permute(0, 2, 1)
if self.use_norm:
dec_out = dec_out * (stdev[:, 0, :].unsqueeze(1).repeat(1, self.pred_len, 1))
dec_out = dec_out + (means[:, 0, :].unsqueeze(1).repeat(1, self.pred_len, 1))
# <<< FIX: Return attentions >>>
return dec_out, attns
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
# <<< FIX: Capture attentions from forecast methods >>>
if self.features == 'M':
dec_out, attns = self.forecast_multi(x_enc, x_mark_enc, x_dec, x_mark_dec)
else:
dec_out, attns = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
# <<< FIX: Return predictions and attentions as a tuple >>>
return dec_out[:, -self.pred_len:, :], attns
else:
return None |