Spaces:
Sleeping
Sleeping
File size: 14,027 Bytes
e1ccef5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from layers.Embed import DataEmbedding, TemporalEmbedding
from torch import Tensor
from typing import Optional
from collections import namedtuple
# static: time-independent features
# observed: time features of the past(e.g. predicted targets)
# known: known information about the past and future(i.e. time stamp)
TypePos = namedtuple('TypePos', ['static', 'observed'])
# When you want to use new dataset, please add the index of 'static, observed' columns here.
# 'known' columns needn't be added, because 'known' inputs are automatically judged and provided by the program.
datatype_dict = {'ETTh1': TypePos([], [x for x in range(7)]),
'ETTm1': TypePos([], [x for x in range(7)])}
def get_known_len(embed_type, freq):
if embed_type != 'timeF':
if freq == 't':
return 5
else:
return 4
else:
freq_map = {'h': 4, 't': 5, 's': 6,
'm': 1, 'a': 1, 'w': 2, 'd': 3, 'b': 3}
return freq_map[freq]
class TFTTemporalEmbedding(TemporalEmbedding):
def __init__(self, d_model, embed_type='fixed', freq='h'):
super(TFTTemporalEmbedding, self).__init__(d_model, embed_type, freq)
def forward(self, x):
x = x.long()
minute_x = self.minute_embed(x[:, :, 4]) if hasattr(
self, 'minute_embed') else 0.
hour_x = self.hour_embed(x[:, :, 3])
weekday_x = self.weekday_embed(x[:, :, 2])
day_x = self.day_embed(x[:, :, 1])
month_x = self.month_embed(x[:, :, 0])
embedding_x = torch.stack([month_x, day_x, weekday_x, hour_x, minute_x], dim=-2) if hasattr(
self, 'minute_embed') else torch.stack([month_x, day_x, weekday_x, hour_x], dim=-2)
return embedding_x
class TFTTimeFeatureEmbedding(nn.Module):
def __init__(self, d_model, embed_type='timeF', freq='h'):
super(TFTTimeFeatureEmbedding, self).__init__()
d_inp = get_known_len(embed_type, freq)
self.embed = nn.ModuleList([nn.Linear(1, d_model, bias=False) for _ in range(d_inp)])
def forward(self, x):
return torch.stack([embed(x[:,:,i].unsqueeze(-1)) for i, embed in enumerate(self.embed)], dim=-2)
class TFTEmbedding(nn.Module):
def __init__(self, configs):
super(TFTEmbedding, self).__init__()
self.pred_len = configs.pred_len
self.static_pos = datatype_dict[configs.data].static
self.observed_pos = datatype_dict[configs.data].observed
self.static_len = len(self.static_pos)
self.observed_len = len(self.observed_pos)
self.static_embedding = nn.ModuleList([DataEmbedding(1,configs.d_model,dropout=configs.dropout) for _ in range(self.static_len)]) \
if self.static_len else None
self.observed_embedding = nn.ModuleList([DataEmbedding(1,configs.d_model,dropout=configs.dropout) for _ in range(self.observed_len)])
self.known_embedding = TFTTemporalEmbedding(configs.d_model, configs.embed, configs.freq) \
if configs.embed != 'timeF' else TFTTimeFeatureEmbedding(configs.d_model, configs.embed, configs.freq)
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
if self.static_len:
# static_input: [B,C,d_model]
static_input = torch.stack([embed(x_enc[:,:1,self.static_pos[i]].unsqueeze(-1), None).squeeze(1) for i, embed in enumerate(self.static_embedding)], dim=-2)
else:
static_input = None
# observed_input: [B,T,C,d_model]
observed_input = torch.stack([embed(x_enc[:,:,self.observed_pos[i]].unsqueeze(-1), None) for i, embed in enumerate(self.observed_embedding)], dim=-2)
x_mark = torch.cat([x_mark_enc, x_mark_dec[:,-self.pred_len:,:]], dim=-2)
# known_input: [B,T,C,d_model]
known_input = self.known_embedding(x_mark)
return static_input, observed_input, known_input
class GLU(nn.Module):
def __init__(self, input_size, output_size):
super().__init__()
self.fc1 = nn.Linear(input_size, output_size)
self.fc2 = nn.Linear(input_size, output_size)
self.glu = nn.GLU()
def forward(self, x):
a = self.fc1(x)
b = self.fc2(x)
return self.glu(torch.cat([a, b], dim=-1))
class GateAddNorm(nn.Module):
def __init__(self, input_size, output_size):
super(GateAddNorm, self).__init__()
self.glu = GLU(input_size, input_size)
self.projection = nn.Linear(input_size, output_size) if input_size != output_size else nn.Identity()
self.layer_norm = nn.LayerNorm(output_size)
def forward(self, x, skip_a):
x = self.glu(x)
x = x + skip_a
return self.layer_norm(self.projection(x))
class GRN(nn.Module):
def __init__(self, input_size, output_size, hidden_size=None, context_size=None, dropout=0.0):
super(GRN, self).__init__()
hidden_size = input_size if hidden_size is None else hidden_size
self.lin_a = nn.Linear(input_size, hidden_size)
self.lin_c = nn.Linear(context_size, hidden_size) if context_size is not None else None
self.lin_i = nn.Linear(hidden_size, hidden_size)
self.dropout = nn.Dropout(dropout)
self.project_a = nn.Linear(input_size, hidden_size) if hidden_size != input_size else nn.Identity()
self.gate = GateAddNorm(hidden_size, output_size)
def forward(self, a: Tensor, c: Optional[Tensor] = None):
# a: [B,T,d], c: [B,d]
x = self.lin_a(a)
if c is not None:
x = x + self.lin_c(c).unsqueeze(1)
x = F.elu(x)
x = self.lin_i(x)
x = self.dropout(x)
return self.gate(x, self.project_a(a))
class VariableSelectionNetwork(nn.Module):
def __init__(self, d_model, variable_num, dropout=0.0):
super(VariableSelectionNetwork, self).__init__()
self.joint_grn = GRN(d_model * variable_num, variable_num, hidden_size=d_model, context_size=d_model, dropout=dropout)
self.variable_grns = nn.ModuleList([GRN(d_model, d_model, dropout=dropout) for _ in range(variable_num)])
def forward(self, x: Tensor, context: Optional[Tensor] = None):
# x: [B,T,C,d] or [B,C,d]
# selection_weights: [B,T,C] or [B,C]
# x_processed: [B,T,d,C] or [B,d,C]
# selection_result: [B,T,d] or [B,d]
x_flattened = torch.flatten(x, start_dim=-2)
selection_weights = self.joint_grn(x_flattened, context)
selection_weights = F.softmax(selection_weights, dim=-1)
x_processed = torch.stack([grn(x[...,i,:]) for i, grn in enumerate(self.variable_grns)], dim=-1)
selection_result = torch.matmul(x_processed, selection_weights.unsqueeze(-1)).squeeze(-1)
return selection_result
class StaticCovariateEncoder(nn.Module):
def __init__(self, d_model, static_len, dropout=0.0):
super(StaticCovariateEncoder, self).__init__()
self.static_vsn = VariableSelectionNetwork(d_model, static_len) if static_len else None
self.grns = nn.ModuleList([GRN(d_model, d_model, dropout=dropout) for _ in range(4)])
def forward(self, static_input):
# static_input: [B,C,d]
if static_input is not None:
static_features = self.static_vsn(static_input)
return [grn(static_features) for grn in self.grns]
else:
return [None] * 4
class InterpretableMultiHeadAttention(nn.Module):
def __init__(self, configs):
super(InterpretableMultiHeadAttention, self).__init__()
self.n_heads = configs.n_heads
assert configs.d_model % configs.n_heads == 0
self.d_head = configs.d_model // configs.n_heads
self.qkv_linears = nn.Linear(configs.d_model, (2 * self.n_heads + 1) * self.d_head, bias=False)
self.out_projection = nn.Linear(self.d_head, configs.d_model, bias=False)
self.out_dropout = nn.Dropout(configs.dropout)
self.scale = self.d_head ** -0.5
example_len = configs.seq_len + configs.pred_len
self.register_buffer("mask", torch.triu(torch.full((example_len, example_len), float('-inf')), 1))
def forward(self, x):
# Q,K,V are all from x
B, T, d_model = x.shape
qkv = self.qkv_linears(x)
q, k, v = qkv.split((self.n_heads * self.d_head, self.n_heads * self.d_head, self.d_head), dim=-1)
q = q.view(B, T, self.n_heads, self.d_head)
k = k.view(B, T, self.n_heads, self.d_head)
v = v.view(B, T, self.d_head)
attention_score = torch.matmul(q.permute((0, 2, 1, 3)), k.permute((0, 2, 3, 1))) # [B,n,T,T]
attention_score.mul_(self.scale)
attention_score = attention_score + self.mask
attention_prob = F.softmax(attention_score, dim=3) # [B,n,T,T]
attention_out = torch.matmul(attention_prob, v.unsqueeze(1)) # [B,n,T,d]
attention_out = torch.mean(attention_out, dim=1) # [B,T,d]
out = self.out_projection(attention_out)
out = self.out_dropout(out) # [B,T,d]
return out
class TemporalFusionDecoder(nn.Module):
def __init__(self, configs):
super(TemporalFusionDecoder, self).__init__()
self.pred_len = configs.pred_len
self.history_encoder = nn.LSTM(configs.d_model, configs.d_model, batch_first=True)
self.future_encoder = nn.LSTM(configs.d_model, configs.d_model, batch_first=True)
self.gate_after_lstm = GateAddNorm(configs.d_model, configs.d_model)
self.enrichment_grn = GRN(configs.d_model, configs.d_model, context_size=configs.d_model, dropout=configs.dropout)
self.attention = InterpretableMultiHeadAttention(configs)
self.gate_after_attention = GateAddNorm(configs.d_model, configs.d_model)
self.position_wise_grn = GRN(configs.d_model, configs.d_model, dropout=configs.dropout)
self.gate_final = GateAddNorm(configs.d_model, configs.d_model)
self.out_projection = nn.Linear(configs.d_model, configs.c_out)
def forward(self, history_input, future_input, c_c, c_h, c_e):
# history_input, future_input: [B,T,d]
# c_c, c_h, c_e: [B,d]
# LSTM
c = (c_c.unsqueeze(0), c_h.unsqueeze(0)) if c_c is not None and c_h is not None else None
historical_features, state = self.history_encoder(history_input, c)
future_features, _ = self.future_encoder(future_input, state)
# Skip connection
temporal_input = torch.cat([history_input, future_input], dim=1)
temporal_features = torch.cat([historical_features, future_features], dim=1)
temporal_features = self.gate_after_lstm(temporal_features, temporal_input) # [B,T,d]
# Static enrichment
enriched_features = self.enrichment_grn(temporal_features, c_e) # [B,T,d]
# Temporal self-attention
attention_out = self.attention(enriched_features) # [B,T,d]
# Don't compute historical loss
attention_out = self.gate_after_attention(attention_out[:,-self.pred_len:], enriched_features[:,-self.pred_len:])
# Position-wise feed-forward
out = self.position_wise_grn(attention_out) # [B,T,d]
# Final skip connection
out = self.gate_final(out, temporal_features[:,-self.pred_len:])
return self.out_projection(out)
class Model(nn.Module):
def __init__(self, configs):
super(Model, self).__init__()
self.configs = configs
self.task_name = configs.task_name
self.seq_len = configs.seq_len
self.label_len = configs.label_len
self.pred_len = configs.pred_len
# Number of variables
self.static_len = len(datatype_dict[configs.data].static)
self.observed_len = len(datatype_dict[configs.data].observed)
self.known_len = get_known_len(configs.embed, configs.freq)
self.embedding = TFTEmbedding(configs)
self.static_encoder = StaticCovariateEncoder(configs.d_model, self.static_len)
self.history_vsn = VariableSelectionNetwork(configs.d_model, self.observed_len + self.known_len)
self.future_vsn = VariableSelectionNetwork(configs.d_model, self.known_len)
self.temporal_fusion_decoder = TemporalFusionDecoder(configs)
def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
# Normalization from Non-stationary Transformer
means = x_enc.mean(1, keepdim=True).detach()
x_enc = x_enc - means
stdev = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
x_enc /= stdev
# Data embedding
# static_input: [B,C,d], observed_input:[B,T,C,d], known_input: [B,T,C,d]
static_input, observed_input, known_input = self.embedding(x_enc, x_mark_enc, x_dec, x_mark_dec)
# Static context
# c_s,...,c_e: [B,d]
c_s, c_c, c_h, c_e = self.static_encoder(static_input)
# Temporal input Selection
history_input = torch.cat([observed_input, known_input[:,:self.seq_len]], dim=-2)
future_input = known_input[:,self.seq_len:]
history_input = self.history_vsn(history_input, c_s)
future_input = self.future_vsn(future_input, c_s)
# TFT main procedure after variable selection
# history_input: [B,T,d], future_input: [B,T,d]
dec_out = self.temporal_fusion_decoder(history_input, future_input, c_c, c_h, c_e)
# De-Normalization from Non-stationary Transformer
dec_out = dec_out * (stdev[:, 0, :].unsqueeze(1).repeat(1, self.pred_len, 1))
dec_out = dec_out + (means[:, 0, :].unsqueeze(1).repeat(1, self.pred_len, 1))
return dec_out
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec) # [B,pred_len,C]
dec_out = torch.cat([torch.zeros_like(x_enc), dec_out], dim=1)
return dec_out # [B, T, D]
return None |