File size: 14,027 Bytes
e1ccef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import torch
import torch.nn as nn
import torch.nn.functional as F
from layers.Embed import DataEmbedding, TemporalEmbedding
from torch import Tensor
from typing import Optional
from collections import namedtuple

# static: time-independent features
# observed: time features of the past(e.g. predicted targets)
# known: known information about the past and future(i.e. time stamp)
TypePos = namedtuple('TypePos', ['static', 'observed'])

# When you want to use new dataset, please add the index of 'static, observed' columns here.
# 'known' columns needn't be added, because 'known' inputs are automatically judged and provided by the program.
datatype_dict = {'ETTh1': TypePos([], [x for x in range(7)]),
                 'ETTm1': TypePos([], [x for x in range(7)])}


def get_known_len(embed_type, freq):
    if embed_type != 'timeF':
        if freq == 't':
            return 5
        else:
            return 4
    else:
        freq_map = {'h': 4, 't': 5, 's': 6,
                    'm': 1, 'a': 1, 'w': 2, 'd': 3, 'b': 3}
        return freq_map[freq]


class TFTTemporalEmbedding(TemporalEmbedding):
    def __init__(self, d_model, embed_type='fixed', freq='h'):
        super(TFTTemporalEmbedding, self).__init__(d_model, embed_type, freq)

    def forward(self, x):
        x = x.long()
        minute_x = self.minute_embed(x[:, :, 4]) if hasattr(
            self, 'minute_embed') else 0.
        hour_x = self.hour_embed(x[:, :, 3])
        weekday_x = self.weekday_embed(x[:, :, 2])
        day_x = self.day_embed(x[:, :, 1])
        month_x = self.month_embed(x[:, :, 0])

        embedding_x = torch.stack([month_x, day_x, weekday_x, hour_x, minute_x], dim=-2) if hasattr(
            self, 'minute_embed') else torch.stack([month_x, day_x, weekday_x, hour_x], dim=-2)
        return embedding_x


class TFTTimeFeatureEmbedding(nn.Module):
    def __init__(self, d_model, embed_type='timeF', freq='h'):
        super(TFTTimeFeatureEmbedding, self).__init__()
        d_inp = get_known_len(embed_type, freq)
        self.embed = nn.ModuleList([nn.Linear(1, d_model, bias=False) for _ in range(d_inp)])

    def forward(self, x):
        return torch.stack([embed(x[:,:,i].unsqueeze(-1)) for i, embed in enumerate(self.embed)], dim=-2)


class TFTEmbedding(nn.Module):
    def __init__(self, configs):
        super(TFTEmbedding, self).__init__()
        self.pred_len = configs.pred_len
        self.static_pos = datatype_dict[configs.data].static
        self.observed_pos = datatype_dict[configs.data].observed
        self.static_len = len(self.static_pos)
        self.observed_len = len(self.observed_pos)

        self.static_embedding = nn.ModuleList([DataEmbedding(1,configs.d_model,dropout=configs.dropout) for _ in range(self.static_len)]) \
            if self.static_len else None
        self.observed_embedding = nn.ModuleList([DataEmbedding(1,configs.d_model,dropout=configs.dropout) for _ in range(self.observed_len)])
        self.known_embedding = TFTTemporalEmbedding(configs.d_model, configs.embed, configs.freq) \
            if configs.embed != 'timeF' else TFTTimeFeatureEmbedding(configs.d_model, configs.embed, configs.freq)

    def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
        if self.static_len:
            # static_input: [B,C,d_model]
            static_input = torch.stack([embed(x_enc[:,:1,self.static_pos[i]].unsqueeze(-1), None).squeeze(1) for i, embed in enumerate(self.static_embedding)], dim=-2)
        else:
            static_input = None

        # observed_input: [B,T,C,d_model]
        observed_input = torch.stack([embed(x_enc[:,:,self.observed_pos[i]].unsqueeze(-1), None) for i, embed in enumerate(self.observed_embedding)], dim=-2)

        x_mark = torch.cat([x_mark_enc, x_mark_dec[:,-self.pred_len:,:]], dim=-2)
        # known_input: [B,T,C,d_model]
        known_input = self.known_embedding(x_mark)

        return static_input, observed_input, known_input


class GLU(nn.Module):
    def __init__(self, input_size, output_size):
        super().__init__()
        self.fc1 = nn.Linear(input_size, output_size)
        self.fc2 = nn.Linear(input_size, output_size)
        self.glu = nn.GLU()

    def forward(self, x):
        a = self.fc1(x)
        b = self.fc2(x)
        return self.glu(torch.cat([a, b], dim=-1))


class GateAddNorm(nn.Module):
    def __init__(self, input_size, output_size):
        super(GateAddNorm, self).__init__()
        self.glu = GLU(input_size, input_size)
        self.projection = nn.Linear(input_size, output_size) if input_size != output_size else nn.Identity()
        self.layer_norm = nn.LayerNorm(output_size)

    def forward(self, x, skip_a):
        x = self.glu(x)
        x = x + skip_a
        return self.layer_norm(self.projection(x))


class GRN(nn.Module):
    def __init__(self, input_size, output_size, hidden_size=None, context_size=None, dropout=0.0):
        super(GRN, self).__init__()
        hidden_size = input_size if hidden_size is None else hidden_size
        self.lin_a = nn.Linear(input_size, hidden_size)
        self.lin_c = nn.Linear(context_size, hidden_size) if context_size is not None else None
        self.lin_i = nn.Linear(hidden_size, hidden_size)
        self.dropout = nn.Dropout(dropout)
        self.project_a = nn.Linear(input_size, hidden_size) if hidden_size != input_size else nn.Identity()
        self.gate = GateAddNorm(hidden_size, output_size)

    def forward(self, a: Tensor, c: Optional[Tensor] = None):
        # a: [B,T,d], c: [B,d]
        x = self.lin_a(a)
        if c is not None:
            x = x + self.lin_c(c).unsqueeze(1)
        x = F.elu(x)
        x = self.lin_i(x)
        x = self.dropout(x)
        return self.gate(x, self.project_a(a))


class VariableSelectionNetwork(nn.Module):
    def __init__(self, d_model, variable_num, dropout=0.0):
        super(VariableSelectionNetwork, self).__init__()
        self.joint_grn = GRN(d_model * variable_num, variable_num, hidden_size=d_model, context_size=d_model, dropout=dropout)
        self.variable_grns = nn.ModuleList([GRN(d_model, d_model, dropout=dropout) for _ in range(variable_num)])

    def forward(self, x: Tensor, context: Optional[Tensor] = None):
        # x: [B,T,C,d] or [B,C,d]
        # selection_weights: [B,T,C] or [B,C]
        # x_processed: [B,T,d,C] or [B,d,C]
        # selection_result: [B,T,d] or [B,d]
        x_flattened = torch.flatten(x, start_dim=-2)
        selection_weights = self.joint_grn(x_flattened, context)
        selection_weights = F.softmax(selection_weights, dim=-1)

        x_processed = torch.stack([grn(x[...,i,:]) for i, grn in enumerate(self.variable_grns)], dim=-1)

        selection_result = torch.matmul(x_processed, selection_weights.unsqueeze(-1)).squeeze(-1)
        return selection_result


class StaticCovariateEncoder(nn.Module):
    def __init__(self, d_model, static_len, dropout=0.0):
        super(StaticCovariateEncoder, self).__init__()
        self.static_vsn = VariableSelectionNetwork(d_model, static_len) if static_len else None
        self.grns = nn.ModuleList([GRN(d_model, d_model, dropout=dropout) for _ in range(4)])

    def forward(self, static_input):
        # static_input: [B,C,d]
        if static_input is not None:
            static_features = self.static_vsn(static_input)
            return [grn(static_features) for grn in self.grns]
        else:
            return [None] * 4


class InterpretableMultiHeadAttention(nn.Module):
    def __init__(self, configs):
        super(InterpretableMultiHeadAttention, self).__init__()
        self.n_heads = configs.n_heads
        assert configs.d_model % configs.n_heads == 0
        self.d_head = configs.d_model // configs.n_heads
        self.qkv_linears = nn.Linear(configs.d_model, (2 * self.n_heads + 1) * self.d_head, bias=False)
        self.out_projection = nn.Linear(self.d_head, configs.d_model, bias=False)
        self.out_dropout = nn.Dropout(configs.dropout)
        self.scale = self.d_head ** -0.5
        example_len = configs.seq_len + configs.pred_len
        self.register_buffer("mask", torch.triu(torch.full((example_len, example_len), float('-inf')), 1))

    def forward(self, x):
        # Q,K,V are all from x
        B, T, d_model = x.shape
        qkv = self.qkv_linears(x)
        q, k, v = qkv.split((self.n_heads * self.d_head, self.n_heads * self.d_head, self.d_head), dim=-1)
        q = q.view(B, T, self.n_heads, self.d_head)
        k = k.view(B, T, self.n_heads, self.d_head)
        v = v.view(B, T, self.d_head)

        attention_score = torch.matmul(q.permute((0, 2, 1, 3)), k.permute((0, 2, 3, 1)))  # [B,n,T,T]
        attention_score.mul_(self.scale)
        attention_score = attention_score + self.mask
        attention_prob = F.softmax(attention_score, dim=3)  # [B,n,T,T]

        attention_out = torch.matmul(attention_prob, v.unsqueeze(1))  # [B,n,T,d]
        attention_out = torch.mean(attention_out, dim=1)  # [B,T,d]
        out = self.out_projection(attention_out)
        out = self.out_dropout(out)  # [B,T,d]
        return out


class TemporalFusionDecoder(nn.Module):
    def __init__(self, configs):
        super(TemporalFusionDecoder, self).__init__()
        self.pred_len = configs.pred_len

        self.history_encoder = nn.LSTM(configs.d_model, configs.d_model, batch_first=True)
        self.future_encoder = nn.LSTM(configs.d_model, configs.d_model, batch_first=True)
        self.gate_after_lstm = GateAddNorm(configs.d_model, configs.d_model)
        self.enrichment_grn = GRN(configs.d_model, configs.d_model, context_size=configs.d_model, dropout=configs.dropout)
        self.attention = InterpretableMultiHeadAttention(configs)
        self.gate_after_attention = GateAddNorm(configs.d_model, configs.d_model)
        self.position_wise_grn = GRN(configs.d_model, configs.d_model, dropout=configs.dropout)
        self.gate_final = GateAddNorm(configs.d_model, configs.d_model)
        self.out_projection = nn.Linear(configs.d_model, configs.c_out)

    def forward(self, history_input, future_input, c_c, c_h, c_e):
        # history_input, future_input: [B,T,d]
        # c_c, c_h, c_e: [B,d]
        # LSTM
        c = (c_c.unsqueeze(0), c_h.unsqueeze(0)) if c_c is not None and c_h is not None else None
        historical_features, state = self.history_encoder(history_input, c)
        future_features, _ = self.future_encoder(future_input, state)

        # Skip connection
        temporal_input = torch.cat([history_input, future_input], dim=1)
        temporal_features = torch.cat([historical_features, future_features], dim=1)
        temporal_features = self.gate_after_lstm(temporal_features, temporal_input)  # [B,T,d]

        # Static enrichment
        enriched_features = self.enrichment_grn(temporal_features, c_e)  # [B,T,d]

        # Temporal self-attention
        attention_out = self.attention(enriched_features)  # [B,T,d]
        # Don't compute historical loss
        attention_out = self.gate_after_attention(attention_out[:,-self.pred_len:], enriched_features[:,-self.pred_len:])

        # Position-wise feed-forward
        out = self.position_wise_grn(attention_out)  # [B,T,d]

        # Final skip connection
        out = self.gate_final(out, temporal_features[:,-self.pred_len:])
        return self.out_projection(out)


class Model(nn.Module):
    def __init__(self, configs):
        super(Model, self).__init__()
        self.configs = configs
        self.task_name = configs.task_name
        self.seq_len = configs.seq_len
        self.label_len = configs.label_len
        self.pred_len = configs.pred_len

        # Number of variables
        self.static_len = len(datatype_dict[configs.data].static)
        self.observed_len = len(datatype_dict[configs.data].observed)
        self.known_len = get_known_len(configs.embed, configs.freq)

        self.embedding = TFTEmbedding(configs)
        self.static_encoder = StaticCovariateEncoder(configs.d_model, self.static_len)
        self.history_vsn = VariableSelectionNetwork(configs.d_model, self.observed_len + self.known_len)
        self.future_vsn = VariableSelectionNetwork(configs.d_model, self.known_len)
        self.temporal_fusion_decoder = TemporalFusionDecoder(configs)

    def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
        # Normalization from Non-stationary Transformer
        means = x_enc.mean(1, keepdim=True).detach()
        x_enc = x_enc - means
        stdev = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
        x_enc /= stdev

        # Data embedding
        # static_input: [B,C,d], observed_input:[B,T,C,d], known_input: [B,T,C,d]
        static_input, observed_input, known_input = self.embedding(x_enc, x_mark_enc, x_dec, x_mark_dec)

        # Static context
        # c_s,...,c_e: [B,d]
        c_s, c_c, c_h, c_e = self.static_encoder(static_input)

        # Temporal input Selection
        history_input = torch.cat([observed_input, known_input[:,:self.seq_len]], dim=-2)
        future_input = known_input[:,self.seq_len:]
        history_input = self.history_vsn(history_input, c_s)
        future_input = self.future_vsn(future_input, c_s)

        # TFT main procedure after variable selection
        # history_input: [B,T,d], future_input: [B,T,d]
        dec_out = self.temporal_fusion_decoder(history_input, future_input, c_c, c_h, c_e)

        # De-Normalization from Non-stationary Transformer
        dec_out = dec_out * (stdev[:, 0, :].unsqueeze(1).repeat(1, self.pred_len, 1))
        dec_out = dec_out + (means[:, 0, :].unsqueeze(1).repeat(1, self.pred_len, 1))
        return dec_out

    def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
        if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
            dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)  # [B,pred_len,C]
            dec_out = torch.cat([torch.zeros_like(x_enc), dec_out], dim=1)
            return dec_out  # [B, T, D]
        return None