File size: 4,333 Bytes
e1ccef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import torch.nn as nn
from einops import rearrange, repeat
from layers.SelfAttention_Family import TwoStageAttentionLayer


class SegMerging(nn.Module):
    def __init__(self, d_model, win_size, norm_layer=nn.LayerNorm):
        super().__init__()
        self.d_model = d_model
        self.win_size = win_size
        self.linear_trans = nn.Linear(win_size * d_model, d_model)
        self.norm = norm_layer(win_size * d_model)

    def forward(self, x):
        batch_size, ts_d, seg_num, d_model = x.shape
        pad_num = seg_num % self.win_size
        if pad_num != 0:
            pad_num = self.win_size - pad_num
            x = torch.cat((x, x[:, :, -pad_num:, :]), dim=-2)

        seg_to_merge = []
        for i in range(self.win_size):
            seg_to_merge.append(x[:, :, i::self.win_size, :])
        x = torch.cat(seg_to_merge, -1)

        x = self.norm(x)
        x = self.linear_trans(x)

        return x


class scale_block(nn.Module):
    def __init__(self, configs, win_size, d_model, n_heads, d_ff, depth, dropout, \
                 seg_num=10, factor=10):
        super(scale_block, self).__init__()

        if win_size > 1:
            self.merge_layer = SegMerging(d_model, win_size, nn.LayerNorm)
        else:
            self.merge_layer = None

        self.encode_layers = nn.ModuleList()

        for i in range(depth):
            self.encode_layers.append(TwoStageAttentionLayer(configs, seg_num, factor, d_model, n_heads, \
                                                             d_ff, dropout))

    def forward(self, x, attn_mask=None, tau=None, delta=None):
        _, ts_dim, _, _ = x.shape

        if self.merge_layer is not None:
            x = self.merge_layer(x)

        for layer in self.encode_layers:
            x = layer(x)

        return x, None


class Encoder(nn.Module):
    def __init__(self, attn_layers):
        super(Encoder, self).__init__()
        self.encode_blocks = nn.ModuleList(attn_layers)

    def forward(self, x):
        encode_x = []
        encode_x.append(x)

        for block in self.encode_blocks:
            x, attns = block(x)
            encode_x.append(x)

        return encode_x, None


class DecoderLayer(nn.Module):
    def __init__(self, self_attention, cross_attention, seg_len, d_model, d_ff=None, dropout=0.1):
        super(DecoderLayer, self).__init__()
        self.self_attention = self_attention
        self.cross_attention = cross_attention
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)
        self.MLP1 = nn.Sequential(nn.Linear(d_model, d_model),
                                  nn.GELU(),
                                  nn.Linear(d_model, d_model))
        self.linear_pred = nn.Linear(d_model, seg_len)

    def forward(self, x, cross):
        batch = x.shape[0]
        x = self.self_attention(x)
        x = rearrange(x, 'b ts_d out_seg_num d_model -> (b ts_d) out_seg_num d_model')

        cross = rearrange(cross, 'b ts_d in_seg_num d_model -> (b ts_d) in_seg_num d_model')
        tmp, attn = self.cross_attention(x, cross, cross, None, None, None,)
        x = x + self.dropout(tmp)
        y = x = self.norm1(x)
        y = self.MLP1(y)
        dec_output = self.norm2(x + y)

        dec_output = rearrange(dec_output, '(b ts_d) seg_dec_num d_model -> b ts_d seg_dec_num d_model', b=batch)
        layer_predict = self.linear_pred(dec_output)
        layer_predict = rearrange(layer_predict, 'b out_d seg_num seg_len -> b (out_d seg_num) seg_len')

        return dec_output, layer_predict


class Decoder(nn.Module):
    def __init__(self, layers):
        super(Decoder, self).__init__()
        self.decode_layers = nn.ModuleList(layers)


    def forward(self, x, cross):
        final_predict = None
        i = 0

        ts_d = x.shape[1]
        for layer in self.decode_layers:
            cross_enc = cross[i]
            x, layer_predict = layer(x, cross_enc)
            if final_predict is None:
                final_predict = layer_predict
            else:
                final_predict = final_predict + layer_predict
            i += 1

        final_predict = rearrange(final_predict, 'b (out_d seg_num) seg_len -> b (seg_num seg_len) out_d', out_d=ts_d)

        return final_predict