Spaces:
Sleeping
Sleeping
File size: 6,363 Bytes
e1ccef5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from layers.Crossformer_EncDec import scale_block, Encoder, Decoder, DecoderLayer
from layers.Embed import PatchEmbedding
from layers.SelfAttention_Family import AttentionLayer, FullAttention, TwoStageAttentionLayer
from models.PatchTST import FlattenHead
from math import ceil
class Model(nn.Module):
"""
Paper link: https://openreview.net/pdf?id=vSVLM2j9eie
"""
def __init__(self, configs):
super(Model, self).__init__()
self.enc_in = configs.enc_in
self.seq_len = configs.seq_len
self.pred_len = configs.pred_len
self.seg_len = 12
self.win_size = 2
self.task_name = configs.task_name
# The padding operation to handle invisible sgemnet length
self.pad_in_len = ceil(1.0 * configs.seq_len / self.seg_len) * self.seg_len
self.pad_out_len = ceil(1.0 * configs.pred_len / self.seg_len) * self.seg_len
self.in_seg_num = self.pad_in_len // self.seg_len
self.out_seg_num = ceil(self.in_seg_num / (self.win_size ** (configs.e_layers - 1)))
self.head_nf = configs.d_model * self.out_seg_num
# Embedding
self.enc_value_embedding = PatchEmbedding(configs.d_model, self.seg_len, self.seg_len, self.pad_in_len - configs.seq_len, 0)
self.enc_pos_embedding = nn.Parameter(
torch.randn(1, configs.enc_in, self.in_seg_num, configs.d_model))
self.pre_norm = nn.LayerNorm(configs.d_model)
# Encoder
self.encoder = Encoder(
[
scale_block(configs, 1 if l is 0 else self.win_size, configs.d_model, configs.n_heads, configs.d_ff,
1, configs.dropout,
self.in_seg_num if l is 0 else ceil(self.in_seg_num / self.win_size ** l), configs.factor
) for l in range(configs.e_layers)
]
)
# Decoder
self.dec_pos_embedding = nn.Parameter(
torch.randn(1, configs.enc_in, (self.pad_out_len // self.seg_len), configs.d_model))
self.decoder = Decoder(
[
DecoderLayer(
TwoStageAttentionLayer(configs, (self.pad_out_len // self.seg_len), configs.factor, configs.d_model, configs.n_heads,
configs.d_ff, configs.dropout),
AttentionLayer(
FullAttention(False, configs.factor, attention_dropout=configs.dropout,
output_attention=False),
configs.d_model, configs.n_heads),
self.seg_len,
configs.d_model,
configs.d_ff,
dropout=configs.dropout,
# activation=configs.activation,
)
for l in range(configs.e_layers + 1)
],
)
if self.task_name == 'imputation' or self.task_name == 'anomaly_detection':
self.head = FlattenHead(configs.enc_in, self.head_nf, configs.seq_len,
head_dropout=configs.dropout)
elif self.task_name == 'classification':
self.flatten = nn.Flatten(start_dim=-2)
self.dropout = nn.Dropout(configs.dropout)
self.projection = nn.Linear(
self.head_nf * configs.enc_in, configs.num_class)
def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
# embedding
x_enc, n_vars = self.enc_value_embedding(x_enc.permute(0, 2, 1))
x_enc = rearrange(x_enc, '(b d) seg_num d_model -> b d seg_num d_model', d = n_vars)
x_enc += self.enc_pos_embedding
x_enc = self.pre_norm(x_enc)
enc_out, attns = self.encoder(x_enc)
dec_in = repeat(self.dec_pos_embedding, 'b ts_d l d -> (repeat b) ts_d l d', repeat=x_enc.shape[0])
dec_out = self.decoder(dec_in, enc_out)
return dec_out
def imputation(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask):
# embedding
x_enc, n_vars = self.enc_value_embedding(x_enc.permute(0, 2, 1))
x_enc = rearrange(x_enc, '(b d) seg_num d_model -> b d seg_num d_model', d=n_vars)
x_enc += self.enc_pos_embedding
x_enc = self.pre_norm(x_enc)
enc_out, attns = self.encoder(x_enc)
dec_out = self.head(enc_out[-1].permute(0, 1, 3, 2)).permute(0, 2, 1)
return dec_out
def anomaly_detection(self, x_enc):
# embedding
x_enc, n_vars = self.enc_value_embedding(x_enc.permute(0, 2, 1))
x_enc = rearrange(x_enc, '(b d) seg_num d_model -> b d seg_num d_model', d=n_vars)
x_enc += self.enc_pos_embedding
x_enc = self.pre_norm(x_enc)
enc_out, attns = self.encoder(x_enc)
dec_out = self.head(enc_out[-1].permute(0, 1, 3, 2)).permute(0, 2, 1)
return dec_out
def classification(self, x_enc, x_mark_enc):
# embedding
x_enc, n_vars = self.enc_value_embedding(x_enc.permute(0, 2, 1))
x_enc = rearrange(x_enc, '(b d) seg_num d_model -> b d seg_num d_model', d=n_vars)
x_enc += self.enc_pos_embedding
x_enc = self.pre_norm(x_enc)
enc_out, attns = self.encoder(x_enc)
# Output from Non-stationary Transformer
output = self.flatten(enc_out[-1].permute(0, 1, 3, 2))
output = self.dropout(output)
output = output.reshape(output.shape[0], -1)
output = self.projection(output)
return output
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
return dec_out[:, -self.pred_len:, :] # [B, L, D]
if self.task_name == 'imputation':
dec_out = self.imputation(x_enc, x_mark_enc, x_dec, x_mark_dec, mask)
return dec_out # [B, L, D]
if self.task_name == 'anomaly_detection':
dec_out = self.anomaly_detection(x_enc)
return dec_out # [B, L, D]
if self.task_name == 'classification':
dec_out = self.classification(x_enc, x_mark_enc)
return dec_out # [B, N]
return None |