Spaces:
Runtime error
Runtime error
| import torch | |
| from torch import nn | |
| import math | |
| from pytorch_transformers.modeling_bert import( | |
| BertEncoder, | |
| BertPreTrainedModel, | |
| BertConfig | |
| ) | |
| class GeLU(nn.Module): | |
| """Implementation of the gelu activation function. | |
| For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): | |
| 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) | |
| Also see https://arxiv.org/abs/1606.08415 | |
| """ | |
| def __init__(self): | |
| super().__init__() | |
| def forward(self, x): | |
| return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) | |
| class BertLayerNorm(nn.Module): | |
| def __init__(self, hidden_size, eps=1e-12): | |
| """Construct a layernorm module in the TF style (epsilon inside the square root). | |
| """ | |
| super(BertLayerNorm, self).__init__() | |
| self.weight = nn.Parameter(torch.ones(hidden_size)) | |
| self.bias = nn.Parameter(torch.zeros(hidden_size)) | |
| self.variance_epsilon = eps | |
| def forward(self, x): | |
| u = x.mean(-1, keepdim=True) | |
| s = (x - u).pow(2).mean(-1, keepdim=True) | |
| x = (x - u) / torch.sqrt(s + self.variance_epsilon) | |
| return self.weight * x + self.bias | |
| class mlp_meta(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.mlp = nn.Sequential( | |
| nn.Linear(config.hid_dim, config.hid_dim), | |
| GeLU(), | |
| BertLayerNorm(config.hid_dim, eps=1e-12), | |
| nn.Dropout(config.dropout), | |
| ) | |
| def forward(self, x): | |
| return self.mlp(x) | |
| class Bert_Transformer_Layer(BertPreTrainedModel): | |
| def __init__(self,fusion_config): | |
| super().__init__(BertConfig(**fusion_config)) | |
| bertconfig_fusion = BertConfig(**fusion_config) | |
| self.encoder = BertEncoder(bertconfig_fusion) | |
| self.init_weights() | |
| def forward(self,input, mask=None): | |
| """ | |
| input:(bs, 4, dim) | |
| """ | |
| batch, feats, dim = input.size() | |
| if mask is not None: | |
| mask_ = torch.ones(size=(batch,feats), device=mask.device) | |
| mask_[:,1:] = mask | |
| mask_ = torch.bmm(mask_.view(batch,1,-1).transpose(1,2), mask_.view(batch,1,-1)) | |
| mask_ = mask_.unsqueeze(1) | |
| else: | |
| mask = torch.Tensor([1.0]).to(input.device) | |
| mask_ = mask.repeat(batch,1,feats, feats) | |
| extend_mask = (1- mask_) * -10000 | |
| assert not extend_mask.requires_grad | |
| head_mask = [None] * self.config.num_hidden_layers | |
| enc_output = self.encoder( | |
| input,extend_mask,head_mask=head_mask | |
| ) | |
| output = enc_output[0] | |
| all_attention = enc_output[1] | |
| return output,all_attention | |
| class mmdPreModel(nn.Module): | |
| def __init__(self, config, num_mlp=0, transformer_flag=False, num_hidden_layers=1, mlp_flag=True): | |
| super(mmdPreModel, self).__init__() | |
| self.num_mlp = num_mlp | |
| self.transformer_flag = transformer_flag | |
| self.mlp_flag = mlp_flag | |
| token_num = config.token_num | |
| self.mlp = nn.Sequential( | |
| nn.Linear(config.in_dim, config.hid_dim), | |
| GeLU(), | |
| BertLayerNorm(config.hid_dim, eps=1e-12), | |
| nn.Dropout(config.dropout), | |
| # nn.Linear(config.hid_dim, config.out_dim), | |
| ) | |
| self.fusion_config = { | |
| 'hidden_size': config.in_dim, | |
| 'num_hidden_layers':num_hidden_layers, | |
| 'num_attention_heads':4, | |
| 'output_attentions':True | |
| } | |
| if self.num_mlp>0: | |
| self.mlp2 = nn.ModuleList([mlp_meta(config) for _ in range(self.num_mlp)]) | |
| if self.transformer_flag: | |
| self.transformer = Bert_Transformer_Layer(self.fusion_config) | |
| self.feature = nn.Linear(config.hid_dim * token_num, config.out_dim) | |
| def forward(self, features): | |
| """ | |
| input: [batch, token_num, hidden_size], output: [batch, token_num * config.out_dim] | |
| """ | |
| if self.transformer_flag: | |
| features,_ = self.transformer(features) | |
| if self.mlp_flag: | |
| features = self.mlp(features) | |
| if self.num_mlp>0: | |
| # features = self.mlp2(features) | |
| for _ in range(1): | |
| for mlp in self.mlp2: | |
| features = mlp(features) | |
| features = self.feature(features.view(features.shape[0], -1)) | |
| return features #features.view(features.shape[0], -1) | |