Spaces:
Running
on
Zero
Running
on
Zero
Create multi_scale_deform_attn.py
Browse files- multi_scale_deform_attn.py +418 -0
multi_scale_deform_attn.py
ADDED
|
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The IDEA Authors. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
# ------------------------------------------------------------------------------------------------
|
| 16 |
+
# Deformable DETR
|
| 17 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
| 18 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
| 19 |
+
# ------------------------------------------------------------------------------------------------
|
| 20 |
+
# Modified from:
|
| 21 |
+
# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/functions/ms_deform_attn_func.py
|
| 22 |
+
# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py
|
| 23 |
+
# https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/multi_scale_deform_attn.py
|
| 24 |
+
# ------------------------------------------------------------------------------------------------
|
| 25 |
+
|
| 26 |
+
import math
|
| 27 |
+
import warnings
|
| 28 |
+
from typing import Optional
|
| 29 |
+
import torch
|
| 30 |
+
import torch.nn as nn
|
| 31 |
+
import torch.nn.functional as F
|
| 32 |
+
from torch.autograd import Function
|
| 33 |
+
from torch.autograd.function import once_differentiable
|
| 34 |
+
from torch.nn.init import constant_, xavier_uniform_
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
# helpers
|
| 38 |
+
def _is_power_of_2(n):
|
| 39 |
+
if (not isinstance(n, int)) or (n < 0):
|
| 40 |
+
raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n)))
|
| 41 |
+
return (n & (n - 1) == 0) and n != 0
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class MultiScaleDeformableAttnFunction(Function):
|
| 45 |
+
@staticmethod
|
| 46 |
+
def forward(
|
| 47 |
+
ctx,
|
| 48 |
+
value,
|
| 49 |
+
value_spatial_shapes,
|
| 50 |
+
value_level_start_index,
|
| 51 |
+
sampling_locations,
|
| 52 |
+
attention_weights,
|
| 53 |
+
im2col_step,
|
| 54 |
+
):
|
| 55 |
+
ctx.im2col_step = im2col_step
|
| 56 |
+
output = _C.ms_deform_attn_forward(
|
| 57 |
+
value,
|
| 58 |
+
value_spatial_shapes,
|
| 59 |
+
value_level_start_index,
|
| 60 |
+
sampling_locations,
|
| 61 |
+
attention_weights,
|
| 62 |
+
ctx.im2col_step,
|
| 63 |
+
)
|
| 64 |
+
ctx.save_for_backward(
|
| 65 |
+
value,
|
| 66 |
+
value_spatial_shapes,
|
| 67 |
+
value_level_start_index,
|
| 68 |
+
sampling_locations,
|
| 69 |
+
attention_weights,
|
| 70 |
+
)
|
| 71 |
+
return output
|
| 72 |
+
|
| 73 |
+
@staticmethod
|
| 74 |
+
@once_differentiable
|
| 75 |
+
def backward(ctx, grad_output):
|
| 76 |
+
(
|
| 77 |
+
value,
|
| 78 |
+
value_spatial_shapes,
|
| 79 |
+
value_level_start_index,
|
| 80 |
+
sampling_locations,
|
| 81 |
+
attention_weights,
|
| 82 |
+
) = ctx.saved_tensors
|
| 83 |
+
grad_value, grad_sampling_loc, grad_attn_weight = _C.ms_deform_attn_backward(
|
| 84 |
+
value,
|
| 85 |
+
value_spatial_shapes,
|
| 86 |
+
value_level_start_index,
|
| 87 |
+
sampling_locations,
|
| 88 |
+
attention_weights,
|
| 89 |
+
grad_output,
|
| 90 |
+
ctx.im2col_step,
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def multi_scale_deformable_attn_pytorch(
|
| 97 |
+
value: torch.Tensor,
|
| 98 |
+
value_spatial_shapes: torch.Tensor,
|
| 99 |
+
sampling_locations: torch.Tensor,
|
| 100 |
+
attention_weights: torch.Tensor,
|
| 101 |
+
) -> torch.Tensor:
|
| 102 |
+
|
| 103 |
+
bs, _, num_heads, embed_dims = value.shape
|
| 104 |
+
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
|
| 105 |
+
value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
|
| 106 |
+
sampling_grids = 2 * sampling_locations - 1
|
| 107 |
+
sampling_value_list = []
|
| 108 |
+
for level, (H_, W_) in enumerate(value_spatial_shapes):
|
| 109 |
+
# bs, H_*W_, num_heads, embed_dims ->
|
| 110 |
+
# bs, H_*W_, num_heads*embed_dims ->
|
| 111 |
+
# bs, num_heads*embed_dims, H_*W_ ->
|
| 112 |
+
# bs*num_heads, embed_dims, H_, W_
|
| 113 |
+
value_l_ = (
|
| 114 |
+
value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_)
|
| 115 |
+
)
|
| 116 |
+
# bs, num_queries, num_heads, num_points, 2 ->
|
| 117 |
+
# bs, num_heads, num_queries, num_points, 2 ->
|
| 118 |
+
# bs*num_heads, num_queries, num_points, 2
|
| 119 |
+
sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1)
|
| 120 |
+
# bs*num_heads, embed_dims, num_queries, num_points
|
| 121 |
+
sampling_value_l_ = F.grid_sample(
|
| 122 |
+
value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
|
| 123 |
+
)
|
| 124 |
+
sampling_value_list.append(sampling_value_l_)
|
| 125 |
+
# (bs, num_queries, num_heads, num_levels, num_points) ->
|
| 126 |
+
# (bs, num_heads, num_queries, num_levels, num_points) ->
|
| 127 |
+
# (bs, num_heads, 1, num_queries, num_levels*num_points)
|
| 128 |
+
attention_weights = attention_weights.transpose(1, 2).reshape(
|
| 129 |
+
bs * num_heads, 1, num_queries, num_levels * num_points
|
| 130 |
+
)
|
| 131 |
+
output = (
|
| 132 |
+
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
|
| 133 |
+
.sum(-1)
|
| 134 |
+
.view(bs, num_heads * embed_dims, num_queries)
|
| 135 |
+
)
|
| 136 |
+
return output.transpose(1, 2).contiguous()
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
class MultiScaleDeformableAttention(nn.Module):
|
| 140 |
+
"""Multi-Scale Deformable Attention Module used in Deformable-DETR
|
| 141 |
+
|
| 142 |
+
`Deformable DETR: Deformable Transformers for End-to-End Object Detection.
|
| 143 |
+
<https://arxiv.org/pdf/2010.04159.pdf>`_.
|
| 144 |
+
|
| 145 |
+
Args:
|
| 146 |
+
embed_dim (int): The embedding dimension of Attention. Default: 256.
|
| 147 |
+
num_heads (int): The number of attention heads. Default: 8.
|
| 148 |
+
num_levels (int): The number of feature map used in Attention. Default: 4.
|
| 149 |
+
num_points (int): The number of sampling points for each query
|
| 150 |
+
in each head. Default: 4.
|
| 151 |
+
img2col_steps (int): The step used in image_to_column. Defualt: 64.
|
| 152 |
+
dropout (float): Dropout layer used in output. Default: 0.1.
|
| 153 |
+
batch_first (bool): if ``True``, then the input and output tensor will be
|
| 154 |
+
provided as `(bs, n, embed_dim)`. Default: False. `(n, bs, embed_dim)`
|
| 155 |
+
"""
|
| 156 |
+
|
| 157 |
+
def __init__(
|
| 158 |
+
self,
|
| 159 |
+
embed_dim: int = 256,
|
| 160 |
+
num_heads: int = 8,
|
| 161 |
+
num_levels: int = 4,
|
| 162 |
+
num_points: int = 4,
|
| 163 |
+
img2col_step: int = 64,
|
| 164 |
+
dropout: float = 0.1,
|
| 165 |
+
batch_first: bool = False,
|
| 166 |
+
):
|
| 167 |
+
super().__init__()
|
| 168 |
+
if embed_dim % num_heads != 0:
|
| 169 |
+
raise ValueError(
|
| 170 |
+
"embed_dim must be divisible by num_heads, but got {} and {}".format(
|
| 171 |
+
embed_dim, num_heads
|
| 172 |
+
)
|
| 173 |
+
)
|
| 174 |
+
head_dim = embed_dim // num_heads
|
| 175 |
+
|
| 176 |
+
self.dropout = nn.Dropout(dropout)
|
| 177 |
+
self.batch_first = batch_first
|
| 178 |
+
|
| 179 |
+
if not _is_power_of_2(head_dim):
|
| 180 |
+
warnings.warn(
|
| 181 |
+
"""
|
| 182 |
+
You'd better set d_model in MSDeformAttn to make sure that
|
| 183 |
+
each dim of the attention head a power of 2, which is more efficient.
|
| 184 |
+
"""
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
self.im2col_step = img2col_step
|
| 188 |
+
self.embed_dim = embed_dim
|
| 189 |
+
self.num_heads = num_heads
|
| 190 |
+
self.num_levels = num_levels
|
| 191 |
+
self.num_points = num_points
|
| 192 |
+
# n_heads * n_points and n_levels for multi-level feature inputs
|
| 193 |
+
self.sampling_offsets = nn.Linear(embed_dim, num_heads * num_levels * num_points * 2)
|
| 194 |
+
self.attention_weights = nn.Linear(embed_dim, num_heads * num_levels * num_points)
|
| 195 |
+
self.value_proj = nn.Linear(embed_dim, embed_dim)
|
| 196 |
+
self.output_proj = nn.Linear(embed_dim, embed_dim)
|
| 197 |
+
|
| 198 |
+
self.init_weights()
|
| 199 |
+
|
| 200 |
+
def init_weights(self):
|
| 201 |
+
"""
|
| 202 |
+
Default initialization for Parameters of Module.
|
| 203 |
+
"""
|
| 204 |
+
constant_(self.sampling_offsets.weight.data, 0.0)
|
| 205 |
+
thetas = torch.arange(self.num_heads, dtype=torch.float32) * (
|
| 206 |
+
2.0 * math.pi / self.num_heads
|
| 207 |
+
)
|
| 208 |
+
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
|
| 209 |
+
grid_init = (
|
| 210 |
+
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
|
| 211 |
+
.view(self.num_heads, 1, 1, 2)
|
| 212 |
+
.repeat(1, self.num_levels, self.num_points, 1)
|
| 213 |
+
)
|
| 214 |
+
for i in range(self.num_points):
|
| 215 |
+
grid_init[:, :, i, :] *= i + 1
|
| 216 |
+
with torch.no_grad():
|
| 217 |
+
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
|
| 218 |
+
constant_(self.attention_weights.weight.data, 0.0)
|
| 219 |
+
constant_(self.attention_weights.bias.data, 0.0)
|
| 220 |
+
xavier_uniform_(self.value_proj.weight.data)
|
| 221 |
+
constant_(self.value_proj.bias.data, 0.0)
|
| 222 |
+
xavier_uniform_(self.output_proj.weight.data)
|
| 223 |
+
constant_(self.output_proj.bias.data, 0.0)
|
| 224 |
+
|
| 225 |
+
def forward(
|
| 226 |
+
self,
|
| 227 |
+
query: torch.Tensor,
|
| 228 |
+
key: Optional[torch.Tensor] = None,
|
| 229 |
+
value: Optional[torch.Tensor] = None,
|
| 230 |
+
identity: Optional[torch.Tensor] = None,
|
| 231 |
+
query_pos: Optional[torch.Tensor] = None,
|
| 232 |
+
key_padding_mask: Optional[torch.Tensor] = None,
|
| 233 |
+
reference_points: Optional[torch.Tensor] = None,
|
| 234 |
+
spatial_shapes: Optional[torch.Tensor] = None,
|
| 235 |
+
level_start_index: Optional[torch.Tensor] = None,
|
| 236 |
+
**kwargs
|
| 237 |
+
) -> torch.Tensor:
|
| 238 |
+
|
| 239 |
+
"""Forward Function of MultiScaleDeformableAttention
|
| 240 |
+
|
| 241 |
+
Args:
|
| 242 |
+
query (torch.Tensor): Query embeddings with shape
|
| 243 |
+
`(num_query, bs, embed_dim)`
|
| 244 |
+
key (torch.Tensor): Key embeddings with shape
|
| 245 |
+
`(num_key, bs, embed_dim)`
|
| 246 |
+
value (torch.Tensor): Value embeddings with shape
|
| 247 |
+
`(num_key, bs, embed_dim)`
|
| 248 |
+
identity (torch.Tensor): The tensor used for addition, with the
|
| 249 |
+
same shape as `query`. Default: None. If None, `query` will be
|
| 250 |
+
used.
|
| 251 |
+
query_pos (torch.Tensor): The position embedding for `query`. Default: None.
|
| 252 |
+
key_padding_mask (torch.Tensor): ByteTensor for `query`, with shape `(bs, num_key)`,
|
| 253 |
+
indicating which elements within `key` to be ignored in attention.
|
| 254 |
+
reference_points (torch.Tensor): The normalized reference points
|
| 255 |
+
with shape `(bs, num_query, num_levels, 2)`,
|
| 256 |
+
all elements is range in [0, 1], top-left (0, 0),
|
| 257 |
+
bottom-right (1, 1), including padding are.
|
| 258 |
+
or `(N, Length_{query}, num_levels, 4)`, add additional
|
| 259 |
+
two dimensions `(h, w)` to form reference boxes.
|
| 260 |
+
spatial_shapes (torch.Tensor): Spatial shape of features in different levels.
|
| 261 |
+
With shape `(num_levels, 2)`, last dimension represents `(h, w)`.
|
| 262 |
+
level_start_index (torch.Tensor): The start index of each level. A tensor with
|
| 263 |
+
shape `(num_levels, )` which can be represented as
|
| 264 |
+
`[0, h_0 * w_0, h_0 * w_0 + h_1 * w_1, ...]`.
|
| 265 |
+
|
| 266 |
+
Returns:
|
| 267 |
+
torch.Tensor: forward results with shape `(num_query, bs, embed_dim)`
|
| 268 |
+
"""
|
| 269 |
+
|
| 270 |
+
if value is None:
|
| 271 |
+
value = query
|
| 272 |
+
|
| 273 |
+
if identity is None:
|
| 274 |
+
identity = query
|
| 275 |
+
if query_pos is not None:
|
| 276 |
+
query = query + query_pos
|
| 277 |
+
|
| 278 |
+
if not self.batch_first:
|
| 279 |
+
# change to (bs, num_query ,embed_dims)
|
| 280 |
+
query = query.permute(1, 0, 2)
|
| 281 |
+
value = value.permute(1, 0, 2)
|
| 282 |
+
|
| 283 |
+
bs, num_query, _ = query.shape
|
| 284 |
+
bs, num_value, _ = value.shape
|
| 285 |
+
|
| 286 |
+
assert (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == num_value
|
| 287 |
+
|
| 288 |
+
# value projection
|
| 289 |
+
value = self.value_proj(value)
|
| 290 |
+
# fill "0" for the padding part
|
| 291 |
+
if key_padding_mask is not None:
|
| 292 |
+
value = value.masked_fill(key_padding_mask[..., None], float(0))
|
| 293 |
+
# [bs, all hw, 256] -> [bs, all hw, 8, 32]
|
| 294 |
+
value = value.view(bs, num_value, self.num_heads, -1)
|
| 295 |
+
# [bs, all hw, 8, 4, 4, 2]: 8 heads, 4 level features, 4 sampling points, 2 offsets
|
| 296 |
+
sampling_offsets = self.sampling_offsets(query).view(
|
| 297 |
+
bs, num_query, self.num_heads, self.num_levels, self.num_points, 2
|
| 298 |
+
)
|
| 299 |
+
# [bs, all hw, 8, 16]: 4 level 4 sampling points: 16 features total
|
| 300 |
+
attention_weights = self.attention_weights(query).view(
|
| 301 |
+
bs, num_query, self.num_heads, self.num_levels * self.num_points
|
| 302 |
+
)
|
| 303 |
+
attention_weights = attention_weights.softmax(-1)
|
| 304 |
+
attention_weights = attention_weights.view(
|
| 305 |
+
bs,
|
| 306 |
+
num_query,
|
| 307 |
+
self.num_heads,
|
| 308 |
+
self.num_levels,
|
| 309 |
+
self.num_points,
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
# bs, num_query, num_heads, num_levels, num_points, 2
|
| 313 |
+
if reference_points.shape[-1] == 2:
|
| 314 |
+
|
| 315 |
+
# reference_points [bs, all hw, 4, 2] -> [bs, all hw, 1, 4, 1, 2]
|
| 316 |
+
# sampling_offsets [bs, all hw, 8, 4, 4, 2]
|
| 317 |
+
# offset_normalizer [4, 2] -> [1, 1, 1, 4, 1, 2]
|
| 318 |
+
# references_points + sampling_offsets
|
| 319 |
+
|
| 320 |
+
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
|
| 321 |
+
sampling_locations = (
|
| 322 |
+
reference_points[:, :, None, :, None, :]
|
| 323 |
+
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
|
| 324 |
+
)
|
| 325 |
+
elif reference_points.shape[-1] == 4:
|
| 326 |
+
sampling_locations = (
|
| 327 |
+
reference_points[:, :, None, :, None, :2]
|
| 328 |
+
+ sampling_offsets
|
| 329 |
+
/ self.num_points
|
| 330 |
+
* reference_points[:, :, None, :, None, 2:]
|
| 331 |
+
* 0.5
|
| 332 |
+
)
|
| 333 |
+
else:
|
| 334 |
+
raise ValueError(
|
| 335 |
+
"Last dim of reference_points must be 2 or 4, but get {} instead.".format(
|
| 336 |
+
reference_points.shape[-1]
|
| 337 |
+
)
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
# the original impl for fp32 training
|
| 341 |
+
if torch.cuda.is_available() and value.is_cuda:
|
| 342 |
+
output = MultiScaleDeformableAttnFunction.apply(
|
| 343 |
+
value.to(torch.float32) if value.dtype==torch.float16 else value,
|
| 344 |
+
spatial_shapes,
|
| 345 |
+
level_start_index,
|
| 346 |
+
sampling_locations,
|
| 347 |
+
attention_weights,
|
| 348 |
+
self.im2col_step,
|
| 349 |
+
)
|
| 350 |
+
else:
|
| 351 |
+
output = multi_scale_deformable_attn_pytorch(
|
| 352 |
+
value, spatial_shapes, sampling_locations, attention_weights
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
if value.dtype==torch.float16:
|
| 356 |
+
output=output.to(torch.float16)
|
| 357 |
+
|
| 358 |
+
output = self.output_proj(output)
|
| 359 |
+
|
| 360 |
+
if not self.batch_first:
|
| 361 |
+
output = output.permute(1, 0, 2)
|
| 362 |
+
|
| 363 |
+
return self.dropout(output) + identity
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
def create_dummy_class(klass, dependency, message=""):
|
| 367 |
+
"""
|
| 368 |
+
When a dependency of a class is not available, create a dummy class which throws ImportError
|
| 369 |
+
when used.
|
| 370 |
+
|
| 371 |
+
Args:
|
| 372 |
+
klass (str): name of the class.
|
| 373 |
+
dependency (str): name of the dependency.
|
| 374 |
+
message: extra message to print
|
| 375 |
+
Returns:
|
| 376 |
+
class: a class object
|
| 377 |
+
"""
|
| 378 |
+
err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, klass)
|
| 379 |
+
if message:
|
| 380 |
+
err = err + " " + message
|
| 381 |
+
|
| 382 |
+
class _DummyMetaClass(type):
|
| 383 |
+
# throw error on class attribute access
|
| 384 |
+
def __getattr__(_, __): # noqa: B902
|
| 385 |
+
raise ImportError(err)
|
| 386 |
+
|
| 387 |
+
class _Dummy(object, metaclass=_DummyMetaClass):
|
| 388 |
+
# throw error on constructor
|
| 389 |
+
def __init__(self, *args, **kwargs):
|
| 390 |
+
raise ImportError(err)
|
| 391 |
+
|
| 392 |
+
return _Dummy
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
def create_dummy_func(func, dependency, message=""):
|
| 396 |
+
"""
|
| 397 |
+
When a dependency of a function is not available, create a dummy function which throws
|
| 398 |
+
ImportError when used.
|
| 399 |
+
|
| 400 |
+
Args:
|
| 401 |
+
func (str): name of the function.
|
| 402 |
+
dependency (str or list[str]): name(s) of the dependency.
|
| 403 |
+
message: extra message to print
|
| 404 |
+
Returns:
|
| 405 |
+
function: a function object
|
| 406 |
+
"""
|
| 407 |
+
err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, func)
|
| 408 |
+
if message:
|
| 409 |
+
err = err + " " + message
|
| 410 |
+
|
| 411 |
+
if isinstance(dependency, (list, tuple)):
|
| 412 |
+
dependency = ",".join(dependency)
|
| 413 |
+
|
| 414 |
+
def _dummy(*args, **kwargs):
|
| 415 |
+
raise ImportError(err)
|
| 416 |
+
|
| 417 |
+
return _dummy
|
| 418 |
+
|