Spaces:
Running
Running
| import os | |
| import sys | |
| import numpy as np | |
| import torch | |
| from diffusers import (CogVideoXDDIMScheduler, DDIMScheduler, | |
| DPMSolverMultistepScheduler, | |
| EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, | |
| PNDMScheduler) | |
| from PIL import Image | |
| current_file_path = os.path.abspath(__file__) | |
| project_roots = [os.path.dirname(current_file_path), os.path.dirname(os.path.dirname(current_file_path)), os.path.dirname(os.path.dirname(os.path.dirname(current_file_path)))] | |
| for project_root in project_roots: | |
| sys.path.insert(0, project_root) if project_root not in sys.path else None | |
| from cogvideox.models import (AutoencoderKLCogVideoX, | |
| CogVideoXTransformer3DModel, T5EncoderModel, | |
| T5Tokenizer) | |
| from cogvideox.pipeline import (CogVideoXFunPipeline, | |
| CogVideoXFunInpaintPipeline) | |
| from cogvideox.utils.lora_utils import merge_lora, unmerge_lora | |
| from cogvideox.utils.fp8_optimization import convert_weight_dtype_wrapper | |
| from cogvideox.utils.utils import get_video_to_video_latent, save_videos_grid | |
| # GPU memory mode, which can be choosen in [model_cpu_offload, model_cpu_offload_and_qfloat8, sequential_cpu_offload]. | |
| # model_cpu_offload means that the entire model will be moved to the CPU after use, which can save some GPU memory. | |
| # | |
| # model_cpu_offload_and_qfloat8 indicates that the entire model will be moved to the CPU after use, | |
| # and the transformer model has been quantized to float8, which can save more GPU memory. | |
| # | |
| # sequential_cpu_offload means that each layer of the model will be moved to the CPU after use, | |
| # resulting in slower speeds but saving a large amount of GPU memory. | |
| GPU_memory_mode = "model_cpu_offload_and_qfloat8" | |
| # model path | |
| model_name = "models/Diffusion_Transformer/CogVideoX-Fun-V1.1-2b-InP" | |
| # Choose the sampler in "Euler" "Euler A" "DPM++" "PNDM" "DDIM_Cog" and "DDIM_Origin" | |
| sampler_name = "DDIM_Origin" | |
| # Load pretrained model if need | |
| transformer_path = None | |
| vae_path = None | |
| lora_path = None | |
| # Other params | |
| sample_size = [384, 672] | |
| # V1.0 and V1.1 support up to 49 frames of video generation, | |
| # while V1.5 supports up to 85 frames. | |
| video_length = 49 | |
| fps = 8 | |
| # Use torch.float16 if GPU does not support torch.bfloat16 | |
| # ome graphics cards, such as v100, 2080ti, do not support torch.bfloat16 | |
| weight_dtype = torch.bfloat16 | |
| # If you are preparing to redraw the reference video, set validation_video and validation_video_mask. | |
| # If you do not use validation_video_mask, the entire video will be redrawn; | |
| # if you use validation_video_mask, only a portion of the video will be redrawn. | |
| # Please set a larger denoise_strength when using validation_video_mask, such as 1.00 instead of 0.70 | |
| validation_video = "asset/1.mp4" | |
| validation_video_mask = None | |
| denoise_strength = 0.70 | |
| # prompts | |
| prompt = "A cute cat is playing the guitar. " | |
| negative_prompt = "The video is not of a high quality, it has a low resolution. Watermark present in each frame. The background is solid. Strange body and strange trajectory. Distortion. " | |
| guidance_scale = 6.0 | |
| seed = 43 | |
| num_inference_steps = 50 | |
| lora_weight = 0.55 | |
| save_path = "samples/cogvideox-fun-videos_v2v" | |
| transformer = CogVideoXTransformer3DModel.from_pretrained( | |
| model_name, | |
| subfolder="transformer", | |
| low_cpu_mem_usage=True, | |
| torch_dtype=torch.float8_e4m3fn if GPU_memory_mode == "model_cpu_offload_and_qfloat8" else weight_dtype, | |
| ).to(weight_dtype) | |
| if transformer_path is not None: | |
| print(f"From checkpoint: {transformer_path}") | |
| if transformer_path.endswith("safetensors"): | |
| from safetensors.torch import load_file, safe_open | |
| state_dict = load_file(transformer_path) | |
| else: | |
| state_dict = torch.load(transformer_path, map_location="cpu") | |
| state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict | |
| m, u = transformer.load_state_dict(state_dict, strict=False) | |
| print(f"missing keys: {len(m)}, unexpected keys: {len(u)}") | |
| # Get Vae | |
| vae = AutoencoderKLCogVideoX.from_pretrained( | |
| model_name, | |
| subfolder="vae" | |
| ).to(weight_dtype) | |
| if vae_path is not None: | |
| print(f"From checkpoint: {vae_path}") | |
| if vae_path.endswith("safetensors"): | |
| from safetensors.torch import load_file, safe_open | |
| state_dict = load_file(vae_path) | |
| else: | |
| state_dict = torch.load(vae_path, map_location="cpu") | |
| state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict | |
| m, u = vae.load_state_dict(state_dict, strict=False) | |
| print(f"missing keys: {len(m)}, unexpected keys: {len(u)}") | |
| # Get tokenizer and text_encoder | |
| tokenizer = T5Tokenizer.from_pretrained( | |
| model_name, subfolder="tokenizer" | |
| ) | |
| text_encoder = T5EncoderModel.from_pretrained( | |
| model_name, subfolder="text_encoder", torch_dtype=weight_dtype | |
| ) | |
| # Get Scheduler | |
| Choosen_Scheduler = scheduler_dict = { | |
| "Euler": EulerDiscreteScheduler, | |
| "Euler A": EulerAncestralDiscreteScheduler, | |
| "DPM++": DPMSolverMultistepScheduler, | |
| "PNDM": PNDMScheduler, | |
| "DDIM_Cog": CogVideoXDDIMScheduler, | |
| "DDIM_Origin": DDIMScheduler, | |
| }[sampler_name] | |
| scheduler = Choosen_Scheduler.from_pretrained( | |
| model_name, | |
| subfolder="scheduler" | |
| ) | |
| if transformer.config.in_channels != vae.config.latent_channels: | |
| pipeline = CogVideoXFunInpaintPipeline( | |
| vae=vae, | |
| tokenizer=tokenizer, | |
| text_encoder=text_encoder, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| ) | |
| else: | |
| pipeline = CogVideoXFunPipeline( | |
| vae=vae, | |
| tokenizer=tokenizer, | |
| text_encoder=text_encoder, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| ) | |
| if GPU_memory_mode == "sequential_cpu_offload": | |
| pipeline.enable_sequential_cpu_offload() | |
| elif GPU_memory_mode == "model_cpu_offload_and_qfloat8": | |
| convert_weight_dtype_wrapper(transformer, weight_dtype) | |
| pipeline.enable_model_cpu_offload() | |
| else: | |
| pipeline.enable_model_cpu_offload() | |
| generator = torch.Generator(device="cuda").manual_seed(seed) | |
| if lora_path is not None: | |
| pipeline = merge_lora(pipeline, lora_path, lora_weight) | |
| video_length = int((video_length - 1) // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if video_length != 1 else 1 | |
| latent_frames = (video_length - 1) // vae.config.temporal_compression_ratio + 1 | |
| if video_length != 1 and transformer.config.patch_size_t is not None and latent_frames % transformer.config.patch_size_t != 0: | |
| additional_frames = transformer.config.patch_size_t - latent_frames % transformer.config.patch_size_t | |
| video_length += additional_frames * vae.config.temporal_compression_ratio | |
| input_video, input_video_mask, clip_image = get_video_to_video_latent(validation_video, video_length=video_length, sample_size=sample_size, validation_video_mask=validation_video_mask, fps=fps) | |
| with torch.no_grad(): | |
| sample = pipeline( | |
| prompt, | |
| num_frames = video_length, | |
| negative_prompt = negative_prompt, | |
| height = sample_size[0], | |
| width = sample_size[1], | |
| generator = generator, | |
| guidance_scale = guidance_scale, | |
| num_inference_steps = num_inference_steps, | |
| video = input_video, | |
| mask_video = input_video_mask, | |
| strength = denoise_strength, | |
| ).videos | |
| if lora_path is not None: | |
| pipeline = unmerge_lora(pipeline, lora_path, lora_weight) | |
| if not os.path.exists(save_path): | |
| os.makedirs(save_path, exist_ok=True) | |
| index = len([path for path in os.listdir(save_path)]) + 1 | |
| prefix = str(index).zfill(8) | |
| if video_length == 1: | |
| save_sample_path = os.path.join(save_path, prefix + f".png") | |
| image = sample[0, :, 0] | |
| image = image.transpose(0, 1).transpose(1, 2) | |
| image = (image * 255).numpy().astype(np.uint8) | |
| image = Image.fromarray(image) | |
| image.save(save_sample_path) | |
| else: | |
| video_path = os.path.join(save_path, prefix + ".mp4") | |
| save_videos_grid(sample, video_path, fps=fps) |