Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| from __future__ import annotations | |
| import os | |
| import random | |
| import tempfile | |
| import sys | |
| # Check critical dependencies before proceeding | |
| try: | |
| import numpy as np | |
| import torch | |
| import gradio as gr | |
| import imageio | |
| from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler | |
| except ImportError as e: | |
| print(f"Error: Missing required dependency - {e}") | |
| print("Please ensure requirements.txt includes: numpy, torch, diffusers, gradio, imageio") | |
| sys.exit(1) | |
| DESCRIPTION = '''# [ModelScope Text to Video Synthesis](https://modelscope.cn/models/damo/text-to-video-synthesis/summary) | |
| <p>For Colab usage, you can view <a href="https://colab.research.google.com/drive/1uW1ZqswkQ9Z9bp5Nbo5z59cAn7I0hE6R?usp=sharing" style="text-decoration: underline;" target="_blank">this webpage</a>.</p> | |
| <p>This model can only be used for non-commercial purposes. See the <a href="https://huggingface.co/damo-vilab/modelscope-damo-text-to-video-synthesis" style="text-decoration: underline;" target="_blank">model card</a>.</p>''' | |
| if (SPACE_ID := os.getenv('SPACE_ID')) is not None: | |
| DESCRIPTION += f'''\n<p>For faster inference, you may duplicate this space and upgrade to GPU. | |
| <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"> | |
| <img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a></p>''' | |
| MAX_NUM_FRAMES = int(os.getenv('MAX_NUM_FRAMES', '64')) # Reduced from 200 for stability | |
| DEFAULT_NUM_FRAMES = min(MAX_NUM_FRAMES, 16) | |
| # Initialize pipeline with error handling | |
| try: | |
| pipe = DiffusionPipeline.from_pretrained( | |
| 'damo-vilab/text-to-video-ms-1.7b', | |
| torch_dtype=torch.float16, | |
| variant='fp16' | |
| ) | |
| pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
| pipe.enable_model_cpu_offload() | |
| pipe.enable_vae_slicing() | |
| except Exception as e: | |
| print(f"Failed to initialize pipeline: {e}") | |
| print("This model requires significant GPU memory. Try a smaller model like 'cerspense/zeroscope_v2_576w' if needed.") | |
| sys.exit(1) | |
| def to_video(frames: list[np.ndarray], fps: int) -> str: | |
| """Convert frames to video using imageio with FFMPEG.""" | |
| try: | |
| out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) | |
| writer = imageio.get_writer(out_file.name, format='FFMPEG', fps=fps) | |
| for frame in frames: | |
| writer.append_data(frame) | |
| writer.close() | |
| return out_file.name | |
| except Exception as e: | |
| print(f"Video creation failed: {e}") | |
| raise | |
| def generate(prompt: str, seed: int, num_frames: int, num_inference_steps: int) -> str: | |
| """Generate video from text prompt.""" | |
| if not prompt.strip(): | |
| raise gr.Error("Please enter a valid prompt") | |
| seed = random.randint(0, 1000000) if seed == -1 else seed | |
| generator = torch.Generator().manual_seed(seed) | |
| try: | |
| frames = pipe( | |
| prompt, | |
| num_inference_steps=num_inference_steps, | |
| num_frames=num_frames, | |
| generator=generator | |
| ).frames | |
| return to_video(frames, 8) | |
| except torch.cuda.OutOfMemoryError: | |
| raise gr.Error("Out of GPU memory - Try reducing frame count or use a smaller model") | |
| except Exception as e: | |
| raise gr.Error(f"Generation failed: {str(e)}") | |
| examples = [ | |
| ['An astronaut riding a horse.', 0, 16, 25], | |
| ['A panda eating bamboo on a rock.', 0, 16, 25], | |
| ['Spiderman is surfing.', 0, 16, 25], | |
| ] | |
| with gr.Blocks(css='style.css') as demo: | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Group(): | |
| with gr.Box(): | |
| with gr.Row(elem_id='prompt-container').style(equal_height=True): | |
| prompt = gr.Text( | |
| label='Prompt', | |
| show_label=False, | |
| max_lines=1, | |
| placeholder='Enter your prompt', | |
| elem_id='prompt-text-input' | |
| ) | |
| run_button = gr.Button('Generate video') | |
| result = gr.Video(label='Result', show_label=False) | |
| with gr.Accordion('Advanced options', open=False): | |
| seed = gr.Slider( | |
| label='Seed', | |
| minimum=-1, | |
| maximum=1000000, | |
| step=1, | |
| value=-1, | |
| info='-1 = random seed each time' | |
| ) | |
| num_frames = gr.Slider( | |
| label='Number of frames', | |
| minimum=16, | |
| maximum=MAX_NUM_FRAMES, | |
| step=1, | |
| value=DEFAULT_NUM_FRAMES, | |
| info='Higher values require more GPU memory' | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label='Inference steps', | |
| minimum=10, | |
| maximum=50, | |
| step=1, | |
| value=25 | |
| ) | |
| inputs = [prompt, seed, num_frames, num_inference_steps] | |
| gr.Examples( | |
| examples=examples, | |
| inputs=inputs, | |
| outputs=result, | |
| fn=generate, | |
| cache_examples=os.getenv('SYSTEM') == 'spaces' | |
| ) | |
| prompt.submit(fn=generate, inputs=inputs, outputs=result) | |
| run_button.click(fn=generate, inputs=inputs, outputs=result) | |
| # Additional UI sections remain unchanged... | |
| demo.queue(max_size=10).launch() |