Update app.py
Browse files
app.py
CHANGED
|
@@ -1,53 +1,79 @@
|
|
| 1 |
-
import
|
| 2 |
-
|
| 3 |
-
|
|
|
|
| 4 |
import time
|
| 5 |
-
import
|
|
|
|
|
|
|
|
|
|
| 6 |
import spaces
|
| 7 |
-
import
|
| 8 |
import numpy as np
|
| 9 |
from PIL import Image
|
|
|
|
|
|
|
| 10 |
from transformers import (
|
| 11 |
Qwen2VLForConditionalGeneration,
|
|
|
|
| 12 |
AutoProcessor,
|
| 13 |
TextIteratorStreamer,
|
| 14 |
)
|
| 15 |
-
from transformers import
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
def downsample_video(video_path):
|
| 39 |
"""
|
| 40 |
-
Downsamples
|
| 41 |
-
|
| 42 |
"""
|
| 43 |
vidcap = cv2.VideoCapture(video_path)
|
| 44 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 45 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
| 46 |
frames = []
|
| 47 |
-
|
| 48 |
-
vidcap.release()
|
| 49 |
-
return frames
|
| 50 |
-
frame_indices = np.linspace(0, total_frames - 1, 25, dtype=int)
|
| 51 |
for i in frame_indices:
|
| 52 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 53 |
success, image = vidcap.read()
|
|
@@ -59,116 +85,202 @@ def downsample_video(video_path):
|
|
| 59 |
vidcap.release()
|
| 60 |
return frames
|
| 61 |
|
| 62 |
-
# Model and Processor Setup
|
| 63 |
-
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
| 64 |
-
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
|
| 65 |
-
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 66 |
-
QV_MODEL_ID,
|
| 67 |
-
trust_remote_code=True,
|
| 68 |
-
torch_dtype=torch.float16
|
| 69 |
-
).to("cuda").eval()
|
| 70 |
-
|
| 71 |
-
ROLMOCR_MODEL_ID = "reducto/RolmOCR"
|
| 72 |
-
rolmocr_processor = AutoProcessor.from_pretrained(ROLMOCR_MODEL_ID, trust_remote_code=True)
|
| 73 |
-
rolmocr_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 74 |
-
ROLMOCR_MODEL_ID,
|
| 75 |
-
trust_remote_code=True,
|
| 76 |
-
torch_dtype=torch.bfloat16
|
| 77 |
-
).to("cuda").eval()
|
| 78 |
-
|
| 79 |
-
# Main Inference Function
|
| 80 |
@spaces.GPU
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
return
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
if file.lower().endswith((".mp4", ".avi", ".mov")):
|
| 94 |
-
frames = downsample_video(file)
|
| 95 |
-
if not frames:
|
| 96 |
-
yield "Error: Could not extract frames from the video."
|
| 97 |
-
return
|
| 98 |
-
for frame, timestamp in frames:
|
| 99 |
-
label = f"Video {idx+1} Frame {timestamp}:"
|
| 100 |
-
image_list.append((label, frame))
|
| 101 |
-
else:
|
| 102 |
-
try:
|
| 103 |
-
img = load_image(file)
|
| 104 |
-
label = f"Image {idx+1}:"
|
| 105 |
-
image_list.append((label, img))
|
| 106 |
-
except Exception as e:
|
| 107 |
-
yield f"Error loading image: {str(e)}"
|
| 108 |
-
return
|
| 109 |
-
|
| 110 |
-
# Build content list
|
| 111 |
-
content = [{"type": "text", "text": text}]
|
| 112 |
-
for label, img in image_list:
|
| 113 |
-
content.append({"type": "text", "text": label})
|
| 114 |
-
content.append({"type": "image", "image": img})
|
| 115 |
-
|
| 116 |
-
messages = [{"role": "user", "content": content}]
|
| 117 |
-
|
| 118 |
-
# Select processor and model
|
| 119 |
-
processor = rolmocr_processor if use_rolmocr else qwen_processor
|
| 120 |
-
model = rolmocr_model if use_rolmocr else qwen_model
|
| 121 |
-
model_name = "RolmOCR" if use_rolmocr else "Qwen2VL OCR"
|
| 122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 124 |
-
all_images = [item["image"] for item in content if item["type"] == "image"]
|
| 125 |
inputs = processor(
|
| 126 |
text=[prompt_full],
|
| 127 |
-
images=
|
| 128 |
return_tensors="pt",
|
| 129 |
padding=True,
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 133 |
-
generation_kwargs =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 135 |
thread.start()
|
| 136 |
buffer = ""
|
| 137 |
-
yield progress_bar_html(f"Processing with {model_name}")
|
| 138 |
for new_text in streamer:
|
| 139 |
buffer += new_text
|
| 140 |
-
buffer = buffer.replace("<|im_end|>", "")
|
| 141 |
time.sleep(0.01)
|
| 142 |
yield buffer
|
| 143 |
|
| 144 |
-
#
|
| 145 |
-
|
| 146 |
-
[
|
| 147 |
-
[
|
| 148 |
-
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
|
| 149 |
]
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
)
|
| 171 |
-
|
| 172 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
-
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
import uuid
|
| 4 |
+
import json
|
| 5 |
import time
|
| 6 |
+
import asyncio
|
| 7 |
+
from threading import Thread
|
| 8 |
+
|
| 9 |
+
import gradio as gr
|
| 10 |
import spaces
|
| 11 |
+
import torch
|
| 12 |
import numpy as np
|
| 13 |
from PIL import Image
|
| 14 |
+
import cv2
|
| 15 |
+
|
| 16 |
from transformers import (
|
| 17 |
Qwen2VLForConditionalGeneration,
|
| 18 |
+
Qwen2_5_VLForConditionalGeneration,
|
| 19 |
AutoProcessor,
|
| 20 |
TextIteratorStreamer,
|
| 21 |
)
|
| 22 |
+
from transformers.image_utils import load_image
|
| 23 |
|
| 24 |
+
# Constants for text generation
|
| 25 |
+
MAX_MAX_NEW_TOKENS = 2048
|
| 26 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 27 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 28 |
+
|
| 29 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 30 |
+
|
| 31 |
+
# Load Cosmos-Reason1-7B
|
| 32 |
+
MODEL_ID_M = "reducto/RolmOCR"
|
| 33 |
+
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
| 34 |
+
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 35 |
+
MODEL_ID_M,
|
| 36 |
+
trust_remote_code=True,
|
| 37 |
+
torch_dtype=torch.float16
|
| 38 |
+
).to(device).eval()
|
| 39 |
+
|
| 40 |
+
# Load DocScope
|
| 41 |
+
MODEL_ID_X = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
| 42 |
+
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
|
| 43 |
+
model_x = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 44 |
+
MODEL_ID_X,
|
| 45 |
+
trust_remote_code=True,
|
| 46 |
+
torch_dtype=torch.float16
|
| 47 |
+
).to(device).eval()
|
| 48 |
+
|
| 49 |
+
# Load Relaxed
|
| 50 |
+
MODEL_ID_Z = "lingshu-medical-mllm/Lingshu-7B"
|
| 51 |
+
processor_z = AutoProcessor.from_pretrained(MODEL_ID_Z, trust_remote_code=True)
|
| 52 |
+
model_z = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 53 |
+
MODEL_ID_Z,
|
| 54 |
+
trust_remote_code=True,
|
| 55 |
+
torch_dtype=torch.float16
|
| 56 |
+
).to(device).eval()
|
| 57 |
+
|
| 58 |
+
# Load visionOCR
|
| 59 |
+
MODEL_ID_V = "nanonets/Nanonets-OCR-s"
|
| 60 |
+
processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
|
| 61 |
+
model_v = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 62 |
+
MODEL_ID_V,
|
| 63 |
+
trust_remote_code=True,
|
| 64 |
+
torch_dtype=torch.float16
|
| 65 |
+
).to(device).eval()
|
| 66 |
|
| 67 |
def downsample_video(video_path):
|
| 68 |
"""
|
| 69 |
+
Downsamples the video to evenly spaced frames.
|
| 70 |
+
Each frame is returned as a PIL image along with its timestamp.
|
| 71 |
"""
|
| 72 |
vidcap = cv2.VideoCapture(video_path)
|
| 73 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 74 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
| 75 |
frames = []
|
| 76 |
+
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
|
|
|
|
|
|
|
|
|
| 77 |
for i in frame_indices:
|
| 78 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 79 |
success, image = vidcap.read()
|
|
|
|
| 85 |
vidcap.release()
|
| 86 |
return frames
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
@spaces.GPU
|
| 89 |
+
def generate_image(model_name: str, text: str, image: Image.Image,
|
| 90 |
+
max_new_tokens: int = 1024,
|
| 91 |
+
temperature: float = 0.6,
|
| 92 |
+
top_p: float = 0.9,
|
| 93 |
+
top_k: int = 50,
|
| 94 |
+
repetition_penalty: float = 1.2):
|
| 95 |
+
"""
|
| 96 |
+
Generates responses using the selected model for image input.
|
| 97 |
+
"""
|
| 98 |
+
if model_name == "RolmOCR":
|
| 99 |
+
processor = processor_m
|
| 100 |
+
model = model_m
|
| 101 |
+
elif model_name == "Qwen2-VL-OCR-2B-Instruct":
|
| 102 |
+
processor = processor_x
|
| 103 |
+
model = model_x
|
| 104 |
+
elif model_name == "Lingshu-7B":
|
| 105 |
+
processor = processor_z
|
| 106 |
+
model = model_z
|
| 107 |
+
elif model_name == "Nanonets-OCR-s":
|
| 108 |
+
processor = processor_v
|
| 109 |
+
model = model_v
|
| 110 |
+
else:
|
| 111 |
+
yield "Invalid model selected."
|
| 112 |
return
|
| 113 |
|
| 114 |
+
if image is None:
|
| 115 |
+
yield "Please upload an image."
|
| 116 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
+
messages = [{
|
| 119 |
+
"role": "user",
|
| 120 |
+
"content": [
|
| 121 |
+
{"type": "image", "image": image},
|
| 122 |
+
{"type": "text", "text": text},
|
| 123 |
+
]
|
| 124 |
+
}]
|
| 125 |
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
|
|
| 126 |
inputs = processor(
|
| 127 |
text=[prompt_full],
|
| 128 |
+
images=[image],
|
| 129 |
return_tensors="pt",
|
| 130 |
padding=True,
|
| 131 |
+
truncation=False,
|
| 132 |
+
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 133 |
+
).to(device)
|
| 134 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 135 |
+
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
| 136 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 137 |
+
thread.start()
|
| 138 |
+
buffer = ""
|
| 139 |
+
for new_text in streamer:
|
| 140 |
+
buffer += new_text
|
| 141 |
+
time.sleep(0.01)
|
| 142 |
+
yield buffer
|
| 143 |
+
|
| 144 |
+
@spaces.GPU
|
| 145 |
+
def generate_video(model_name: str, text: str, video_path: str,
|
| 146 |
+
max_new_tokens: int = 1024,
|
| 147 |
+
temperature: float = 0.6,
|
| 148 |
+
top_p: float = 0.9,
|
| 149 |
+
top_k: int = 50,
|
| 150 |
+
repetition_penalty: float = 1.2):
|
| 151 |
+
"""
|
| 152 |
+
Generates responses using the selected model for video input.
|
| 153 |
+
"""
|
| 154 |
+
if model_name == "RolmOCR":
|
| 155 |
+
processor = processor_m
|
| 156 |
+
model = model_m
|
| 157 |
+
elif model_name == "Qwen2-VL-OCR-2B-Instruct":
|
| 158 |
+
processor = processor_x
|
| 159 |
+
model = model_x
|
| 160 |
+
elif model_name == "Lingshu-7B":
|
| 161 |
+
processor = processor_z
|
| 162 |
+
model = model_z
|
| 163 |
+
elif model_name == "Nanonets-OCR-s":
|
| 164 |
+
processor = processor_v
|
| 165 |
+
model = model_v
|
| 166 |
+
else:
|
| 167 |
+
yield "Invalid model selected."
|
| 168 |
+
return
|
| 169 |
|
| 170 |
+
if video_path is None:
|
| 171 |
+
yield "Please upload a video."
|
| 172 |
+
return
|
| 173 |
+
|
| 174 |
+
frames = downsample_video(video_path)
|
| 175 |
+
messages = [
|
| 176 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
| 177 |
+
{"role": "user", "content": [{"type": "text", "text": text}]}
|
| 178 |
+
]
|
| 179 |
+
for frame in frames:
|
| 180 |
+
image, timestamp = frame
|
| 181 |
+
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
|
| 182 |
+
messages[1]["content"].append({"type": "image", "image": image})
|
| 183 |
+
inputs = processor.apply_chat_template(
|
| 184 |
+
messages,
|
| 185 |
+
tokenize=True,
|
| 186 |
+
add_generation_prompt=True,
|
| 187 |
+
return_dict=True,
|
| 188 |
+
return_tensors="pt",
|
| 189 |
+
truncation=False,
|
| 190 |
+
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 191 |
+
).to(device)
|
| 192 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 193 |
+
generation_kwargs = {
|
| 194 |
+
**inputs,
|
| 195 |
+
"streamer": streamer,
|
| 196 |
+
"max_new_tokens": max_new_tokens,
|
| 197 |
+
"do_sample": True,
|
| 198 |
+
"temperature": temperature,
|
| 199 |
+
"top_p": top_p,
|
| 200 |
+
"top_k": top_k,
|
| 201 |
+
"repetition_penalty": repetition_penalty,
|
| 202 |
+
}
|
| 203 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 204 |
thread.start()
|
| 205 |
buffer = ""
|
|
|
|
| 206 |
for new_text in streamer:
|
| 207 |
buffer += new_text
|
|
|
|
| 208 |
time.sleep(0.01)
|
| 209 |
yield buffer
|
| 210 |
|
| 211 |
+
# Define examples for image and video inference
|
| 212 |
+
image_examples = [
|
| 213 |
+
["Perform OCR on the Image.", "images/1.jpg"],
|
| 214 |
+
["Extract the table content", "images/2.png"]
|
|
|
|
| 215 |
]
|
| 216 |
|
| 217 |
+
video_examples = [
|
| 218 |
+
["Explain the watch ad in detail.", "videos/1.mp4"],
|
| 219 |
+
["Identify the main actions in the cartoon video", "videos/2.mp4"]
|
| 220 |
+
]
|
| 221 |
+
|
| 222 |
+
css = """
|
| 223 |
+
.submit-btn {
|
| 224 |
+
background-color: #2980b9 !important;
|
| 225 |
+
color: white !important;
|
| 226 |
+
}
|
| 227 |
+
.submit-btn:hover {
|
| 228 |
+
background-color: #3498db !important;
|
| 229 |
+
}
|
| 230 |
+
"""
|
| 231 |
+
|
| 232 |
+
# Create the Gradio Interface
|
| 233 |
+
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
| 234 |
+
gr.Markdown("# **[Multimodal OCR](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
|
| 235 |
+
with gr.Row():
|
| 236 |
+
with gr.Column():
|
| 237 |
+
with gr.Tabs():
|
| 238 |
+
with gr.TabItem("Image Inference"):
|
| 239 |
+
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 240 |
+
image_upload = gr.Image(type="pil", label="Image")
|
| 241 |
+
image_submit = gr.Button("Submit", elem_classes="submit-btn")
|
| 242 |
+
gr.Examples(
|
| 243 |
+
examples=image_examples,
|
| 244 |
+
inputs=[image_query, image_upload]
|
| 245 |
+
)
|
| 246 |
+
with gr.TabItem("Video Inference"):
|
| 247 |
+
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 248 |
+
video_upload = gr.Video(label="Video")
|
| 249 |
+
video_submit = gr.Button("Submit", elem_classes="submit-btn")
|
| 250 |
+
gr.Examples(
|
| 251 |
+
examples=video_examples,
|
| 252 |
+
inputs=[video_query, video_upload]
|
| 253 |
+
)
|
| 254 |
+
with gr.Accordion("Advanced options", open=False):
|
| 255 |
+
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
| 256 |
+
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
| 257 |
+
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 258 |
+
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 259 |
+
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
| 260 |
+
with gr.Column():
|
| 261 |
+
output = gr.Textbox(label="Output", interactive=False, lines=2, scale=2)
|
| 262 |
+
model_choice = gr.Radio(
|
| 263 |
+
choices=["Nanonets-OCR-s", "Qwen2-VL-OCR-2B-Instruct", "RolmOCR", "Lingshu-7B"],
|
| 264 |
+
label="Select Model",
|
| 265 |
+
value="RolmOCR"
|
| 266 |
)
|
| 267 |
+
|
| 268 |
+
gr.Markdown("**Model Info**")
|
| 269 |
+
gr.Markdown("⤷ [Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s): nanonets-ocr-s is a powerful, state-of-the-art image-to-markdown ocr model that goes far beyond traditional text extraction. it transforms documents into structured markdown with intelligent content recognition and semantic tagging.")
|
| 270 |
+
gr.Markdown("⤷ [Qwen2-VL-OCR-2B-Instruct](https://huggingface.co/prithivMLmods/Qwen2-VL-OCR-2B-Instruct): qwen2-vl-ocr-2b-instruct model is a fine-tuned version of qwen/qwen2-vl-2b-instruct, tailored for tasks that involve <messy> optical character recognition (ocr), image-to-text conversion, and math problem solving with latex formatting.")
|
| 271 |
+
gr.Markdown("⤷ [RolmOCR](https://huggingface.co/reducto/RolmOCR): rolmocr, high-quality, openly available approach to parsing pdfs and other complex documents oprical character recognition. it is designed to handle a wide range of document types, including scanned documents, handwritten text, and complex layouts.")
|
| 272 |
+
gr.Markdown("⤷ [Lingshu-7B](https://huggingface.co/lingshu-medical-mllm/Lingshu-7B): lingshu-7b is a generalist foundation model for unified multimodal medical understanding and reasoning, virtual assistants, and content generation.")
|
| 273 |
+
|
| 274 |
+
image_submit.click(
|
| 275 |
+
fn=generate_image,
|
| 276 |
+
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 277 |
+
outputs=output
|
| 278 |
+
)
|
| 279 |
+
video_submit.click(
|
| 280 |
+
fn=generate_video,
|
| 281 |
+
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 282 |
+
outputs=output
|
| 283 |
+
)
|
| 284 |
|
| 285 |
+
if __name__ == "__main__":
|
| 286 |
+
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)
|