File size: 18,111 Bytes
a26c9d1
 
 
 
5d63d59
a26c9d1
 
f821a2b
a26c9d1
 
fc95e60
a26c9d1
6401487
92e002a
a26c9d1
 
6401487
 
a26c9d1
1bfd717
6401487
 
 
a26c9d1
f821a2b
 
 
 
 
8f7bf5f
 
 
 
 
 
 
 
 
 
 
 
 
 
f821a2b
 
8f7bf5f
 
 
 
 
 
 
 
f821a2b
 
 
 
8f7bf5f
f821a2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f7bf5f
 
 
 
 
 
f821a2b
 
8f7bf5f
 
 
 
 
 
 
 
 
 
f821a2b
8f7bf5f
f821a2b
8f7bf5f
 
 
 
f821a2b
 
 
8f7bf5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed275c9
a26c9d1
 
 
 
 
 
 
be1a209
 
 
 
 
 
 
 
 
 
 
 
5cb7bcd
 
 
 
 
a26c9d1
 
 
 
4eaf777
a26c9d1
 
 
 
 
 
 
 
1a498ca
1bfd717
 
 
 
 
 
 
 
7b80fd5
 
5cb7bcd
ec56362
5cb7bcd
 
 
 
ec56362
5cb7bcd
 
 
 
 
 
 
 
ec56362
6401487
92e002a
a26c9d1
 
92e002a
6401487
 
 
 
a26c9d1
6401487
 
 
 
 
 
 
 
 
 
 
ed275c9
a26c9d1
 
 
 
 
 
 
 
1a498ca
a26c9d1
ec56362
a26c9d1
 
5cb7bcd
a26c9d1
 
 
 
 
ec56362
1bfd717
 
7b80fd5
ec56362
 
a26c9d1
1a498ca
c307af6
 
a26c9d1
1a498ca
a26c9d1
c307af6
a26c9d1
 
 
f821a2b
a26c9d1
 
 
c307af6
 
92e002a
a26c9d1
5633a75
fe53594
f821a2b
a26c9d1
 
 
 
 
 
 
 
 
1bfd717
a26c9d1
1a498ca
a26c9d1
 
 
 
 
 
 
 
 
 
1a498ca
a26c9d1
ec56362
a26c9d1
 
5cb7bcd
a26c9d1
 
 
 
 
ec56362
1bfd717
 
7b80fd5
ec56362
 
a26c9d1
1a498ca
a26c9d1
c307af6
a26c9d1
1a498ca
a26c9d1
 
f821a2b
 
 
 
 
 
 
 
 
 
 
 
a26c9d1
f821a2b
 
a26c9d1
 
f821a2b
c307af6
a26c9d1
 
 
 
 
 
 
 
 
 
c307af6
ed275c9
 
 
8bf8d90
1bfd717
5d63d59
1a498ca
ed275c9
a26c9d1
 
fe53161
129183c
3a3fbaf
9522057
91cda81
a26c9d1
129183c
 
a26c9d1
 
 
8f7bf5f
f821a2b
a26c9d1
348c671
a26c9d1
 
 
f821a2b
8f7bf5f
a26c9d1
 
 
e715667
a26c9d1
 
f821a2b
8f7bf5f
a26c9d1
 
 
 
 
 
 
 
 
 
ec56362
348c671
f821a2b
 
f515ec3
f821a2b
 
 
 
9dba9ab
b35ea58
 
f90cc91
b35ea58
 
 
f821a2b
a26c9d1
 
 
1a498ca
a26c9d1
 
 
 
1a498ca
a26c9d1
91cda81
a26c9d1
f821a2b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
from typing import Iterable

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2

from transformers import (
    Qwen2VLForConditionalGeneration,
    Qwen2_5_VLForConditionalGeneration,
    AutoModelForImageTextToText,
    AutoProcessor,
    TextIteratorStreamer,
)
from transformers.image_utils import load_image
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes

# --- Theme and CSS Definition ---

# Define the Thistle color palette
colors.thistle = colors.Color(
    name="thistle",
    c50="#F9F5F9",
    c100="#F0E8F1",
    c200="#E7DBE8",
    c300="#DECEE0",
    c400="#D2BFD8",
    c500="#D8BFD8",  # Thistle base color
    c600="#B59CB7",
    c700="#927996",
    c800="#6F5675",
    c900="#4C3454",
    c950="#291233",
)

colors.red_gray = colors.Color(
    name="red_gray",
    c50="#f7eded", c100="#f5dcdc", c200="#efb4b4", c300="#e78f8f",
    c400="#d96a6a", c500="#c65353", c600="#b24444", c700="#8f3434",
    c800="#732d2d", c900="#5f2626", c950="#4d2020",
)

class ThistleTheme(Soft):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.gray,
        secondary_hue: colors.Color | str = colors.thistle, # Use the new color
        neutral_hue: colors.Color | str = colors.slate,
        text_size: sizes.Size | str = sizes.text_lg,
        font: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
        ),
        font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            background_fill_primary="*primary_50",
            background_fill_primary_dark="*primary_900",
            body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
            body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
            button_primary_text_color="black",
            button_primary_text_color_hover="white",
            button_primary_background_fill="linear-gradient(90deg, *secondary_400, *secondary_500)",
            button_primary_background_fill_hover="linear-gradient(90deg, *secondary_500, *secondary_600)",
            button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
            button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
            button_secondary_text_color="black",
            button_secondary_text_color_hover="white",
            button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
            button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
            button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
            button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
            slider_color="*secondary_400",
            slider_color_dark="*secondary_600",
            block_title_text_weight="600",
            block_border_width="3px",
            block_shadow="*shadow_drop_lg",
            button_primary_shadow="*shadow_drop_lg",
            button_large_padding="11px",
            color_accent_soft="*primary_100",
            block_label_background_fill="*primary_200",
        )

# Instantiate the new theme
thistle_theme = ThistleTheme()

css = """
#main-title h1 {
    font-size: 2.3em !important;
}
#output-title h2 {
    font-size: 2.1em !important;
}
:root {
    --color-grey-50: #f9fafb;
    --banner-background: var(--secondary-400);
    --banner-text-color: var(--primary-100);
    --banner-background-dark: var(--secondary-800);
    --banner-text-color-dark: var(--primary-100);
    --banner-chrome-height: calc(16px + 43px);
    --chat-chrome-height-wide-no-banner: 320px;
    --chat-chrome-height-narrow-no-banner: 450px;
    --chat-chrome-height-wide: calc(var(--chat-chrome-height-wide-no-banner) + var(--banner-chrome-height));
    --chat-chrome-height-narrow: calc(var(--chat-chrome-height-narrow-no-banner) + var(--banner-chrome-height));
}
.banner-message { background-color: var(--banner-background); padding: 5px; margin: 0; border-radius: 5px; border: none; }
.banner-message-text { font-size: 13px; font-weight: bolder; color: var(--banner-text-color) !important; }
body.dark .banner-message { background-color: var(--banner-background-dark) !important; }
body.dark .gradio-container .contain .banner-message .banner-message-text { color: var(--banner-text-color-dark) !important; }
.toast-body { background-color: var(--color-grey-50); }
.html-container:has(.css-styles) { padding: 0; margin: 0; }
.css-styles { height: 0; }
.model-message { text-align: end; }
.model-dropdown-container { display: flex; align-items: center; gap: 10px; padding: 0; }
.user-input-container .multimodal-textbox{ border: none !important; }
.control-button { height: 51px; }
button.cancel { border: var(--button-border-width) solid var(--button-cancel-border-color); background: var(--button-cancel-background-fill); color: var(--button-cancel-text-color); box-shadow: var(--button-cancel-shadow); }
button.cancel:hover, .cancel[disabled] { background: var(--button-cancel-background-fill-hover); color: var(--button-cancel-text-color-hover); }
.opt-out-message { top: 8px; }
.opt-out-message .html-container, .opt-out-checkbox label { font-size: 14px !important; padding: 0 !important; margin: 0 !important; color: var(--neutral-400) !important; }
div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; max-height: 900px !important; }
div.no-padding { padding: 0 !important; }
@media (max-width: 1280px) { div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; } }
@media (max-width: 1024px) {
    .responsive-row { flex-direction: column; }
    .model-message { text-align: start; font-size: 10px !important; }
    .model-dropdown-container { flex-direction: column; align-items: flex-start; }
    div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-narrow)) !important; }
}
@media (max-width: 400px) {
    .responsive-row { flex-direction: column; }
    .model-message { text-align: start; font-size: 10px !important; }
    .model-dropdown-container { flex-direction: column; align-items: flex-start; }
    div.block.chatbot { max-height: 360px !important; }
}
@media (max-height: 932px) { .chatbot { max-height: 500px !important; } }
@media (max-height: 1280px) { div.block.chatbot { max-height: 800px !important; } }
"""

# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
    print("current device:", torch.cuda.current_device())
    print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))

print("Using device:", device)

# --- Model Loading ---
# Load Nanonets-OCR-s
MODEL_ID_V = "nanonets/Nanonets-OCR-s"
processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
model_v = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_V,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load Qwen2-VL-OCR-2B-Instruct
MODEL_ID_X = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID_X,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load Aya-Vision-8b
MODEL_ID_A = "CohereForAI/aya-vision-8b"
processor_a = AutoProcessor.from_pretrained(MODEL_ID_A, trust_remote_code=True)
model_a = AutoModelForImageTextToText.from_pretrained(
    MODEL_ID_A,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load olmOCR-7B-0725
MODEL_ID_W = "allenai/olmOCR-7B-0725"
processor_w = AutoProcessor.from_pretrained(MODEL_ID_W, trust_remote_code=True)
model_w = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_W, 
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load RolmOCR
MODEL_ID_M = "reducto/RolmOCR"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_M,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

def downsample_video(video_path):
    """
    Downsamples the video to evenly spaced frames.
    Each frame is returned as a PIL image along with its timestamp.
    """
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    """
    Generates responses using the selected model for image input.
    Yields raw text and Markdown-formatted text.
    """
    if model_name == "RolmOCR-7B":
        processor = processor_m
        model = model_m
    elif model_name == "Qwen2-VL-OCR-2B":
        processor = processor_x
        model = model_x
    elif model_name == "Nanonets-OCR-s":
        processor = processor_v
        model = model_v
    elif model_name == "Aya-Vision-8B":
        processor = processor_a
        model = model_a
    elif model_name == "olmOCR-7B-0725":
        processor = processor_w
        model = model_w
    else:
        yield "Invalid model selected.", "Invalid model selected."
        return

    if image is None:
        yield "Please upload an image.", "Please upload an image."
        return

    messages = [{
        "role": "user",
        "content": [
            {"type": "image"},
            {"type": "text", "text": text},
        ]
    }]
    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(
        text=[prompt_full],
        images=[image],
        return_tensors="pt",
        padding=True,
        truncation=True,
        max_length=MAX_INPUT_TOKEN_LENGTH
    ).to(device)
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        yield buffer, buffer

@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    """
    Generates responses using the selected model for video input.
    Yields raw text and Markdown-formatted text.
    """
    if model_name == "RolmOCR-7B":
        processor = processor_m
        model = model_m
    elif model_name == "Qwen2-VL-OCR-2B":
        processor = processor_x
        model = model_x
    elif model_name == "Nanonets-OCR-s":
        processor = processor_v
        model = model_v
    elif model_name == "Aya-Vision-8B":
        processor = processor_a
        model = model_a
    elif model_name == "olmOCR-7B-0725":
        processor = processor_w
        model = model_w
    else:
        yield "Invalid model selected.", "Invalid model selected."
        return

    if video_path is None:
        yield "Please upload a video.", "Please upload a video."
        return

    frames_with_ts = downsample_video(video_path)
    images_for_processor = [frame for frame, ts in frames_with_ts]

    messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
    for frame in images_for_processor:
        messages[0]["content"].insert(0, {"type": "image"})
        
    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    
    inputs = processor(
        text=[prompt_full],
        images=images_for_processor,
        return_tensors="pt",
        padding=True,
        truncation=True,
        max_length=MAX_INPUT_TOKEN_LENGTH
    ).to(device)

    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {
        **inputs,
        "streamer": streamer,
        "max_new_tokens": max_new_tokens,
        "do_sample": True,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "repetition_penalty": repetition_penalty,
    }
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        yield buffer, buffer

# Define examples for image and video inference
image_examples = [
    ["Extract the full page.", "images/ocr.png"],     
    ["Extract the content.", "images/4.png"],          
    ["Convert this page to doc [table] precisely for markdown.", "images/0.png"]
]

video_examples = [
    ["Explain the Ad in Detail.", "videos/1.mp4"],
    ["Identify the main actions in the cartoon video.", "videos/2.mp4"]
]

# Create the Gradio Interface
with gr.Blocks(css=css, theme=thistle_theme) as demo:
    gr.Markdown("# **Multimodal OCR**", elem_id="main-title")
    with gr.Row():
        with gr.Column(scale=2):
            with gr.Tabs():
                with gr.TabItem("Image Inference"):
                    image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    image_upload = gr.Image(type="pil", label="Upload Image", height=290)
                    image_submit = gr.Button("Submit", variant="primary")
                    gr.Examples(
                        examples=image_examples,
                        inputs=[image_query, image_upload]
                    ) 
                with gr.TabItem("Video Inference"):
                    video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    video_upload = gr.Video(label="Upload Video", height=290)
                    video_submit = gr.Button("Submit", variant="primary")
                    gr.Examples(
                        examples=video_examples,
                        inputs=[video_query, video_upload]
                    )
            with gr.Accordion("Advanced options", open=False):
                max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
                temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
                top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
                top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
                repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
                
        with gr.Column(scale=3):
                gr.Markdown("## Output", elem_id="output-title")
                output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=11, show_copy_button=True)
                with gr.Accordion("(Result.md)", open=False):
                    markdown_output = gr.Markdown(label="(Result.Md)", latex_delimiters=[
                                    {"left": "$$", "right": "$$", "display": True},
                                    {"left": "$", "right": "$", "display": False}
                                ])
                    
                model_choice = gr.Radio(
                    choices=["olmOCR-7B-0725", "Nanonets-OCR-s", "RolmOCR-7B", 
                         "Aya-Vision-8B", "Qwen2-VL-OCR-2B"],
                    label="Select Model",
                    value="olmOCR-7B-0725"
                )
     
    image_submit.click(
        fn=generate_image,
        inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=[output, markdown_output]
    )
    video_submit.click(
        fn=generate_video,
        inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=[output, markdown_output]
    )

if __name__ == "__main__":
    demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)