File size: 18,111 Bytes
a26c9d1 5d63d59 a26c9d1 f821a2b a26c9d1 fc95e60 a26c9d1 6401487 92e002a a26c9d1 6401487 a26c9d1 1bfd717 6401487 a26c9d1 f821a2b 8f7bf5f f821a2b 8f7bf5f f821a2b 8f7bf5f f821a2b 8f7bf5f f821a2b 8f7bf5f f821a2b 8f7bf5f f821a2b 8f7bf5f f821a2b 8f7bf5f ed275c9 a26c9d1 be1a209 5cb7bcd a26c9d1 4eaf777 a26c9d1 1a498ca 1bfd717 7b80fd5 5cb7bcd ec56362 5cb7bcd ec56362 5cb7bcd ec56362 6401487 92e002a a26c9d1 92e002a 6401487 a26c9d1 6401487 ed275c9 a26c9d1 1a498ca a26c9d1 ec56362 a26c9d1 5cb7bcd a26c9d1 ec56362 1bfd717 7b80fd5 ec56362 a26c9d1 1a498ca c307af6 a26c9d1 1a498ca a26c9d1 c307af6 a26c9d1 f821a2b a26c9d1 c307af6 92e002a a26c9d1 5633a75 fe53594 f821a2b a26c9d1 1bfd717 a26c9d1 1a498ca a26c9d1 1a498ca a26c9d1 ec56362 a26c9d1 5cb7bcd a26c9d1 ec56362 1bfd717 7b80fd5 ec56362 a26c9d1 1a498ca a26c9d1 c307af6 a26c9d1 1a498ca a26c9d1 f821a2b a26c9d1 f821a2b a26c9d1 f821a2b c307af6 a26c9d1 c307af6 ed275c9 8bf8d90 1bfd717 5d63d59 1a498ca ed275c9 a26c9d1 fe53161 129183c 3a3fbaf 9522057 91cda81 a26c9d1 129183c a26c9d1 8f7bf5f f821a2b a26c9d1 348c671 a26c9d1 f821a2b 8f7bf5f a26c9d1 e715667 a26c9d1 f821a2b 8f7bf5f a26c9d1 ec56362 348c671 f821a2b f515ec3 f821a2b 9dba9ab b35ea58 f90cc91 b35ea58 f821a2b a26c9d1 1a498ca a26c9d1 1a498ca a26c9d1 91cda81 a26c9d1 f821a2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
from typing import Iterable
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
Qwen2VLForConditionalGeneration,
Qwen2_5_VLForConditionalGeneration,
AutoModelForImageTextToText,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
# --- Theme and CSS Definition ---
# Define the Thistle color palette
colors.thistle = colors.Color(
name="thistle",
c50="#F9F5F9",
c100="#F0E8F1",
c200="#E7DBE8",
c300="#DECEE0",
c400="#D2BFD8",
c500="#D8BFD8", # Thistle base color
c600="#B59CB7",
c700="#927996",
c800="#6F5675",
c900="#4C3454",
c950="#291233",
)
colors.red_gray = colors.Color(
name="red_gray",
c50="#f7eded", c100="#f5dcdc", c200="#efb4b4", c300="#e78f8f",
c400="#d96a6a", c500="#c65353", c600="#b24444", c700="#8f3434",
c800="#732d2d", c900="#5f2626", c950="#4d2020",
)
class ThistleTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.thistle, # Use the new color
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="black",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_400, *secondary_500)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_secondary_text_color="black",
button_secondary_text_color_hover="white",
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
slider_color="*secondary_400",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
# Instantiate the new theme
thistle_theme = ThistleTheme()
css = """
#main-title h1 {
font-size: 2.3em !important;
}
#output-title h2 {
font-size: 2.1em !important;
}
:root {
--color-grey-50: #f9fafb;
--banner-background: var(--secondary-400);
--banner-text-color: var(--primary-100);
--banner-background-dark: var(--secondary-800);
--banner-text-color-dark: var(--primary-100);
--banner-chrome-height: calc(16px + 43px);
--chat-chrome-height-wide-no-banner: 320px;
--chat-chrome-height-narrow-no-banner: 450px;
--chat-chrome-height-wide: calc(var(--chat-chrome-height-wide-no-banner) + var(--banner-chrome-height));
--chat-chrome-height-narrow: calc(var(--chat-chrome-height-narrow-no-banner) + var(--banner-chrome-height));
}
.banner-message { background-color: var(--banner-background); padding: 5px; margin: 0; border-radius: 5px; border: none; }
.banner-message-text { font-size: 13px; font-weight: bolder; color: var(--banner-text-color) !important; }
body.dark .banner-message { background-color: var(--banner-background-dark) !important; }
body.dark .gradio-container .contain .banner-message .banner-message-text { color: var(--banner-text-color-dark) !important; }
.toast-body { background-color: var(--color-grey-50); }
.html-container:has(.css-styles) { padding: 0; margin: 0; }
.css-styles { height: 0; }
.model-message { text-align: end; }
.model-dropdown-container { display: flex; align-items: center; gap: 10px; padding: 0; }
.user-input-container .multimodal-textbox{ border: none !important; }
.control-button { height: 51px; }
button.cancel { border: var(--button-border-width) solid var(--button-cancel-border-color); background: var(--button-cancel-background-fill); color: var(--button-cancel-text-color); box-shadow: var(--button-cancel-shadow); }
button.cancel:hover, .cancel[disabled] { background: var(--button-cancel-background-fill-hover); color: var(--button-cancel-text-color-hover); }
.opt-out-message { top: 8px; }
.opt-out-message .html-container, .opt-out-checkbox label { font-size: 14px !important; padding: 0 !important; margin: 0 !important; color: var(--neutral-400) !important; }
div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; max-height: 900px !important; }
div.no-padding { padding: 0 !important; }
@media (max-width: 1280px) { div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; } }
@media (max-width: 1024px) {
.responsive-row { flex-direction: column; }
.model-message { text-align: start; font-size: 10px !important; }
.model-dropdown-container { flex-direction: column; align-items: flex-start; }
div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-narrow)) !important; }
}
@media (max-width: 400px) {
.responsive-row { flex-direction: column; }
.model-message { text-align: start; font-size: 10px !important; }
.model-dropdown-container { flex-direction: column; align-items: flex-start; }
div.block.chatbot { max-height: 360px !important; }
}
@media (max-height: 932px) { .chatbot { max-height: 500px !important; } }
@media (max-height: 1280px) { div.block.chatbot { max-height: 800px !important; } }
"""
# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
print("current device:", torch.cuda.current_device())
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
print("Using device:", device)
# --- Model Loading ---
# Load Nanonets-OCR-s
MODEL_ID_V = "nanonets/Nanonets-OCR-s"
processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
model_v = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_V,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Qwen2-VL-OCR-2B-Instruct
MODEL_ID_X = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Aya-Vision-8b
MODEL_ID_A = "CohereForAI/aya-vision-8b"
processor_a = AutoProcessor.from_pretrained(MODEL_ID_A, trust_remote_code=True)
model_a = AutoModelForImageTextToText.from_pretrained(
MODEL_ID_A,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load olmOCR-7B-0725
MODEL_ID_W = "allenai/olmOCR-7B-0725"
processor_w = AutoProcessor.from_pretrained(MODEL_ID_W, trust_remote_code=True)
model_w = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_W,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load RolmOCR
MODEL_ID_M = "reducto/RolmOCR"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
def downsample_video(video_path):
"""
Downsamples the video to evenly spaced frames.
Each frame is returned as a PIL image along with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for image input.
Yields raw text and Markdown-formatted text.
"""
if model_name == "RolmOCR-7B":
processor = processor_m
model = model_m
elif model_name == "Qwen2-VL-OCR-2B":
processor = processor_x
model = model_x
elif model_name == "Nanonets-OCR-s":
processor = processor_v
model = model_v
elif model_name == "Aya-Vision-8B":
processor = processor_a
model = model_a
elif model_name == "olmOCR-7B-0725":
processor = processor_w
model = model_w
else:
yield "Invalid model selected.", "Invalid model selected."
return
if image is None:
yield "Please upload an image.", "Please upload an image."
return
messages = [{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": text},
]
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True,
truncation=True,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for video input.
Yields raw text and Markdown-formatted text.
"""
if model_name == "RolmOCR-7B":
processor = processor_m
model = model_m
elif model_name == "Qwen2-VL-OCR-2B":
processor = processor_x
model = model_x
elif model_name == "Nanonets-OCR-s":
processor = processor_v
model = model_v
elif model_name == "Aya-Vision-8B":
processor = processor_a
model = model_a
elif model_name == "olmOCR-7B-0725":
processor = processor_w
model = model_w
else:
yield "Invalid model selected.", "Invalid model selected."
return
if video_path is None:
yield "Please upload a video.", "Please upload a video."
return
frames_with_ts = downsample_video(video_path)
images_for_processor = [frame for frame, ts in frames_with_ts]
messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
for frame in images_for_processor:
messages[0]["content"].insert(0, {"type": "image"})
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=images_for_processor,
return_tensors="pt",
padding=True,
truncation=True,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
# Define examples for image and video inference
image_examples = [
["Extract the full page.", "images/ocr.png"],
["Extract the content.", "images/4.png"],
["Convert this page to doc [table] precisely for markdown.", "images/0.png"]
]
video_examples = [
["Explain the Ad in Detail.", "videos/1.mp4"],
["Identify the main actions in the cartoon video.", "videos/2.mp4"]
]
# Create the Gradio Interface
with gr.Blocks(css=css, theme=thistle_theme) as demo:
gr.Markdown("# **Multimodal OCR**", elem_id="main-title")
with gr.Row():
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("Image Inference"):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Upload Image", height=290)
image_submit = gr.Button("Submit", variant="primary")
gr.Examples(
examples=image_examples,
inputs=[image_query, image_upload]
)
with gr.TabItem("Video Inference"):
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
video_upload = gr.Video(label="Upload Video", height=290)
video_submit = gr.Button("Submit", variant="primary")
gr.Examples(
examples=video_examples,
inputs=[video_query, video_upload]
)
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
with gr.Column(scale=3):
gr.Markdown("## Output", elem_id="output-title")
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=11, show_copy_button=True)
with gr.Accordion("(Result.md)", open=False):
markdown_output = gr.Markdown(label="(Result.Md)", latex_delimiters=[
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False}
])
model_choice = gr.Radio(
choices=["olmOCR-7B-0725", "Nanonets-OCR-s", "RolmOCR-7B",
"Aya-Vision-8B", "Qwen2-VL-OCR-2B"],
label="Select Model",
value="olmOCR-7B-0725"
)
image_submit.click(
fn=generate_image,
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output]
)
video_submit.click(
fn=generate_video,
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output]
)
if __name__ == "__main__":
demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True) |