Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,723 Bytes
ac6279d 049a77c ac6279d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
from typing import Optional
# Import HiggsAudio components
from higgs_audio.serve.serve_engine import HiggsAudioServeEngine
from higgs_audio.data_types import ChatMLSample, AudioContent, Message
import base64
from functools import lru_cache
from loguru import logger
import os
import json
import uuid
import time
import numpy as np
import re
def process_text_output(text_output: str):
# remove all the continuous <|AUDIO_OUT|> tokens with a single <|AUDIO_OUT|>
text_output = re.sub(r"(<\|AUDIO_OUT\|>)+", r"<|AUDIO_OUT|>", text_output)
return text_output
def check_return_audio(audio_wv: np.ndarray):
# check if the audio returned is all silent
if np.all(audio_wv == 0):
logger.warning("Audio is silent, returning None")
def load_voice_presets():
"""Load the voice presets from the voice_examples directory."""
try:
with open(
os.path.join(os.path.dirname(__file__), "examples", "audios", "config.json"),
"r",
) as f:
voice_dict = json.load(f)
voice_presets = {k: v for k, v in voice_dict.items()}
voice_presets["EMPTY"] = "No reference voice"
logger.info(f"Loaded voice presets: {list(voice_presets.keys())}")
return voice_presets
except FileNotFoundError:
logger.warning("Voice examples config file not found. Using empty voice presets.")
return {"EMPTY": "No reference voice"}
except Exception as e:
logger.error(f"Error loading voice presets: {e}")
return {"EMPTY": "No reference voice"}
SAMPLE_RATE = 24000
DEFAULT_STOP_STRINGS = ["<|end_of_text|>", "<|eot_id|>"]
VOICE_PRESETS = load_voice_presets()
def initialize_engine(model_path, audio_tokenizer_path) -> bool:
engine = HiggsAudioServeEngine(
model_name_or_path=model_path,
audio_tokenizer_name_or_path=audio_tokenizer_path,
device="cuda",
)
return engine
def get_voice_preset(voice_preset):
"""Get the voice path and text for a given voice preset."""
preset_dir = os.path.join(os.path.dirname(__file__), "examples", "audios")
voice_path = os.path.join(preset_dir, VOICE_PRESETS[voice_preset]["audio_file"])
if not os.path.exists(voice_path):
logger.warning(f"Voice preset file not found: {voice_path}")
return None, "Voice preset not found"
text = VOICE_PRESETS[voice_preset]["transcript"]
return voice_path, text
def normalize_chinese_punctuation(text):
"""
Convert Chinese (full-width) punctuation marks to English (half-width) equivalents.
"""
# Mapping of Chinese punctuation to English punctuation
chinese_to_english_punct = {
",": ", ", # comma
"。": ".", # period
":": ":", # colon
";": ";", # semicolon
"?": "?", # question mark
"!": "!", # exclamation mark
"(": "(", # left parenthesis
")": ")", # right parenthesis
"【": "[", # left square bracket
"】": "]", # right square bracket
"《": "<", # left angle quote
"》": ">", # right angle quote
"“": '"', # left double quotation
"”": '"', # right double quotation
"‘": "'", # left single quotation
"’": "'", # right single quotation
"、": ",", # enumeration comma
"—": "-", # em dash
"…": "...", # ellipsis
"·": ".", # middle dot
"「": '"', # left corner bracket
"」": '"', # right corner bracket
"『": '"', # left double corner bracket
"』": '"', # right double corner bracket
}
# Replace each Chinese punctuation with its English counterpart
for zh_punct, en_punct in chinese_to_english_punct.items():
text = text.replace(zh_punct, en_punct)
return text
def normalize_text(transcript: str):
transcript = normalize_chinese_punctuation(transcript)
# Other normalizations (e.g., parentheses and other symbols. Will be improved in the future)
transcript = transcript.replace("(", " ")
transcript = transcript.replace(")", " ")
transcript = transcript.replace("°F", " degrees Fahrenheit")
transcript = transcript.replace("°C", " degrees Celsius")
for tag, replacement in [
("[laugh]", "<SE>[Laughter]</SE>"),
("[humming start]", "<SE>[Humming]</SE>"),
("[humming end]", "<SE_e>[Humming]</SE_e>"),
("[music start]", "<SE_s>[Music]</SE_s>"),
("[music end]", "<SE_e>[Music]</SE_e>"),
("[music]", "<SE>[Music]</SE>"),
("[sing start]", "<SE_s>[Singing]</SE_s>"),
("[sing end]", "<SE_e>[Singing]</SE_e>"),
("[applause]", "<SE>[Applause]</SE>"),
("[cheering]", "<SE>[Cheering]</SE>"),
("[cough]", "<SE>[Cough]</SE>"),
]:
transcript = transcript.replace(tag, replacement)
lines = transcript.split("\n")
transcript = "\n".join([" ".join(line.split()) for line in lines if line.strip()])
transcript = transcript.strip()
if not any([transcript.endswith(c) for c in [".", "!", "?", ",", ";", '"', "'", "</SE_e>", "</SE>"]]):
transcript += "."
return transcript
@lru_cache(maxsize=20)
def encode_audio_file(file_path):
"""Encode an audio file to base64."""
with open(file_path, "rb") as audio_file:
return base64.b64encode(audio_file.read()).decode("utf-8")
def prepare_chatml_sample(
voice_preset: str,
text: str,
reference_audio: Optional[str] = None,
reference_text: Optional[str] = None,
system_prompt: str = "",
):
"""Prepare a ChatMLSample for the HiggsAudioServeEngine."""
messages = []
# Add system message if provided
if len(system_prompt) > 0:
messages.append(Message(role="system", content=system_prompt))
# Add reference audio if provided
audio_base64 = None
ref_text = ""
if reference_audio:
# Custom reference audio
audio_base64 = encode_audio_file(reference_audio)
ref_text = reference_text or ""
elif voice_preset != "EMPTY":
# Voice preset
voice_path, ref_text = get_voice_preset(voice_preset)
if voice_path is None:
logger.warning(f"Voice preset {voice_preset} not found, skipping reference audio")
else:
audio_base64 = encode_audio_file(voice_path)
# Only add reference audio if we have it
if audio_base64 is not None:
# Add user message with reference text
messages.append(Message(role="user", content=ref_text))
# Add assistant message with audio content
audio_content = AudioContent(raw_audio=audio_base64, audio_url="")
messages.append(Message(role="assistant", content=[audio_content]))
# Add the main user message
text = normalize_text(text)
messages.append(Message(role="user", content=text))
return ChatMLSample(messages=messages)
def text_to_speech(
engine,
text,
system_prompt="",
voice_preset="EMPTY",
reference_audio=None,
reference_text=None,
max_completion_tokens=1024,
temperature=1.0,
top_p=0.95,
top_k=50,
stop_strings=None,
ras_win_len=7,
ras_win_max_num_repeat=2,
):
"""
Convert text to speech using HiggsAudioServeEngine.
Args:
text: The text to convert to speech
voice_preset: The voice preset to use (or "EMPTY" for no preset)
reference_audio: Optional path to reference audio file
reference_text: Optional transcript of the reference audio
max_completion_tokens: Maximum number of tokens to generate
temperature: Sampling temperature for generation
top_p: Top-p sampling parameter
top_k: Top-k sampling parameter
system_prompt: System prompt to guide the model
stop_strings: Dataframe containing stop strings
ras_win_len: Window length for repetition avoidance sampling
ras_win_max_num_repeat: Maximum number of repetitions allowed in the window
Returns:
Tuple of (generated_text, (sample_rate, audio_data)) where audio_data is int16 numpy array
"""
try:
# Prepare ChatML sample
chatml_sample = prepare_chatml_sample(voice_preset, text, reference_audio, reference_text, system_prompt)
# Convert stop strings format
if stop_strings is None:
stop_list = DEFAULT_STOP_STRINGS
else:
stop_list = [s for s in stop_strings["stops"] if s.strip()]
request_id = f"tts-playground-{str(uuid.uuid4())}"
start_time = time.time()
# Generate using the engine
response = engine.generate(
chat_ml_sample=chatml_sample,
max_new_tokens=max_completion_tokens,
temperature=temperature,
top_k=top_k if top_k > 0 else None,
top_p=top_p,
stop_strings=stop_list,
ras_win_len=ras_win_len if ras_win_len > 0 else None,
ras_win_max_num_repeat=max(ras_win_len, ras_win_max_num_repeat),
)
generation_time = time.time() - start_time
# Process the response
text_output = process_text_output(response.generated_text)
if response.audio is not None:
# Convert to int16 for Gradio
audio_data = (response.audio * 32767).astype(np.int16)
check_return_audio(audio_data)
return text_output, (response.sampling_rate, audio_data)
else:
logger.warning("No audio generated")
return text_output, None
except Exception as e:
error_msg = f"Error generating speech: {e}"
logger.error(error_msg)
return f"❌ {error_msg}", None |