Spaces:
Running
on
Zero
Running
on
Zero
Update inference_coz_single.py
Browse files- inference_coz_single.py +57 -25
inference_coz_single.py
CHANGED
|
@@ -71,7 +71,7 @@ def _generate_vlm_prompt(
|
|
| 71 |
return_tensors="pt",
|
| 72 |
).to(device)
|
| 73 |
|
| 74 |
-
# (4) Generate tokens→decode
|
| 75 |
generated = vlm_model.generate(**inputs, max_new_tokens=128)
|
| 76 |
# strip off the prompt tokens from each generated sequence:
|
| 77 |
trimmed = [
|
|
@@ -86,28 +86,46 @@ def _generate_vlm_prompt(
|
|
| 86 |
|
| 87 |
|
| 88 |
# -------------------------------------------------------------------
|
| 89 |
-
# Main Function: recursive_multiscale_sr
|
| 90 |
# -------------------------------------------------------------------
|
| 91 |
def recursive_multiscale_sr(
|
| 92 |
input_png_path: str,
|
| 93 |
upscale: int,
|
| 94 |
-
|
|
|
|
|
|
|
| 95 |
"""
|
| 96 |
-
Perform
|
| 97 |
- input_png_path: path to a single .png file on disk.
|
| 98 |
- upscale: integer up-scale factor per recursion (e.g. 4).
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
###############################
|
| 106 |
# 1. Fixed hyper-parameters
|
| 107 |
###############################
|
| 108 |
device = "cuda"
|
| 109 |
process_size = 512 # same as args.process_size
|
| 110 |
-
|
| 111 |
# model checkpoint paths (hard-coded to your example)
|
| 112 |
LORA_PATH = "ckpt/SR_LoRA/model_20001.pkl"
|
| 113 |
VAE_PATH = "ckpt/SR_VAE/vae_encoder_20001.pt"
|
|
@@ -142,7 +160,7 @@ def recursive_multiscale_sr(
|
|
| 142 |
###############################
|
| 143 |
# 3.1 Instantiate the underlying SD3-Euler UNet/VAE/text encoders
|
| 144 |
sd3 = SD3Euler()
|
| 145 |
-
# move all text encoders+transformer+VAE to CUDA:
|
| 146 |
sd3.text_enc_1.to(device)
|
| 147 |
sd3.text_enc_2.to(device)
|
| 148 |
sd3.text_enc_3.to(device)
|
|
@@ -163,7 +181,7 @@ def recursive_multiscale_sr(
|
|
| 163 |
# (by default, “model_test(...)” takes (lq_tensor, prompt=str) and returns a list[tensor])
|
| 164 |
|
| 165 |
###############################
|
| 166 |
-
# 4. Load the VLM (Qwen2.5-VL)
|
| 167 |
###############################
|
| 168 |
vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 169 |
VLM_NAME,
|
|
@@ -173,7 +191,7 @@ def recursive_multiscale_sr(
|
|
| 173 |
vlm_processor = AutoProcessor.from_pretrained(VLM_NAME)
|
| 174 |
|
| 175 |
###############################
|
| 176 |
-
# 5. Pre-allocate a Temporary Directory
|
| 177 |
# to hold intermediate JPEG/PNG files
|
| 178 |
###############################
|
| 179 |
unique_id = uuid.uuid4().hex
|
|
@@ -193,23 +211,37 @@ def recursive_multiscale_sr(
|
|
| 193 |
prev_path = os.path.join(td, "step0_prev.png")
|
| 194 |
img0.save(prev_path)
|
| 195 |
|
| 196 |
-
# We will maintain
|
| 197 |
sr_pil_list: list[Image.Image] = []
|
| 198 |
-
prompt_list = []
|
| 199 |
|
| 200 |
###############################
|
| 201 |
-
# 7. Recursion loop (
|
| 202 |
###############################
|
| 203 |
for rec in range(rec_num):
|
| 204 |
-
# (A)
|
| 205 |
prev_pil = Image.open(prev_path).convert("RGB")
|
| 206 |
-
w, h = prev_pil.size
|
|
|
|
|
|
|
| 207 |
new_w, new_h = w // upscale, h // upscale # e.g. 128×128 for upscale=4
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
right = left + new_w
|
| 212 |
bottom = top + new_h
|
|
|
|
| 213 |
cropped = prev_pil.crop((left, top, right, bottom))
|
| 214 |
|
| 215 |
# (B) Resize that crop back up to (512×512) via BICUBIC → zoomed
|
|
@@ -228,7 +260,7 @@ def recursive_multiscale_sr(
|
|
| 228 |
)
|
| 229 |
# (By default, no extra user prompt is appended.)
|
| 230 |
|
| 231 |
-
# (D) Prepare the low-res tensor for SR: convert zoomed→Tensor→[0,1]→[−1,1]
|
| 232 |
to_tensor = transforms.ToTensor()
|
| 233 |
lq = to_tensor(zoomed).unsqueeze(0).to(device) # shape (1,3,512,512)
|
| 234 |
lq = (lq * 2.0) - 1.0
|
|
@@ -252,7 +284,7 @@ def recursive_multiscale_sr(
|
|
| 252 |
# end for(rec)
|
| 253 |
|
| 254 |
###############################
|
| 255 |
-
# 8. Return the
|
| 256 |
###############################
|
| 257 |
-
# The list sr_pil_list = [ SR1, SR2,
|
| 258 |
-
return sr_pil_list, prompt_list
|
|
|
|
| 71 |
return_tensors="pt",
|
| 72 |
).to(device)
|
| 73 |
|
| 74 |
+
# (4) Generate tokens → decode
|
| 75 |
generated = vlm_model.generate(**inputs, max_new_tokens=128)
|
| 76 |
# strip off the prompt tokens from each generated sequence:
|
| 77 |
trimmed = [
|
|
|
|
| 86 |
|
| 87 |
|
| 88 |
# -------------------------------------------------------------------
|
| 89 |
+
# Main Function: recursive_multiscale_sr (with multiple centers)
|
| 90 |
# -------------------------------------------------------------------
|
| 91 |
def recursive_multiscale_sr(
|
| 92 |
input_png_path: str,
|
| 93 |
upscale: int,
|
| 94 |
+
rec_num: int = 4,
|
| 95 |
+
centers: list[tuple[float, float]] = None,
|
| 96 |
+
) -> tuple[list[Image.Image], list[str]]:
|
| 97 |
"""
|
| 98 |
+
Perform `rec_num` recursive_multiscale super-resolution steps on a single PNG.
|
| 99 |
- input_png_path: path to a single .png file on disk.
|
| 100 |
- upscale: integer up-scale factor per recursion (e.g. 4).
|
| 101 |
+
- rec_num: how many recursion steps to perform.
|
| 102 |
+
- centers: a list of normalized (x, y) tuples in [0, 1], one per recursion step,
|
| 103 |
+
indicating where to center the low-res crop for each step. The list
|
| 104 |
+
length must equal rec_num. If centers is None, defaults to center=(0.5, 0.5)
|
| 105 |
+
for all steps.
|
| 106 |
+
|
| 107 |
+
Returns a tuple (sr_pil_list, prompt_list), where:
|
| 108 |
+
- sr_pil_list: list of PIL.Image outputs [SR1, SR2, …, SR_rec_num] in order.
|
| 109 |
+
- prompt_list: list of the VLM prompts generated at each recursion.
|
| 110 |
"""
|
| 111 |
+
###############################
|
| 112 |
+
# 0. Validate / fill default centers
|
| 113 |
+
###############################
|
| 114 |
+
if centers is None:
|
| 115 |
+
# Default: use center (0.5, 0.5) for every recursion
|
| 116 |
+
centers = [(0.5, 0.5) for _ in range(rec_num)]
|
| 117 |
+
else:
|
| 118 |
+
if not isinstance(centers, (list, tuple)) or len(centers) != rec_num:
|
| 119 |
+
raise ValueError(
|
| 120 |
+
f"`centers` must be a list of {rec_num} (x,y) tuples, but got length {len(centers)}."
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
###############################
|
| 124 |
# 1. Fixed hyper-parameters
|
| 125 |
###############################
|
| 126 |
device = "cuda"
|
| 127 |
process_size = 512 # same as args.process_size
|
| 128 |
+
|
| 129 |
# model checkpoint paths (hard-coded to your example)
|
| 130 |
LORA_PATH = "ckpt/SR_LoRA/model_20001.pkl"
|
| 131 |
VAE_PATH = "ckpt/SR_VAE/vae_encoder_20001.pt"
|
|
|
|
| 160 |
###############################
|
| 161 |
# 3.1 Instantiate the underlying SD3-Euler UNet/VAE/text encoders
|
| 162 |
sd3 = SD3Euler()
|
| 163 |
+
# move all text encoders + transformer + VAE to CUDA:
|
| 164 |
sd3.text_enc_1.to(device)
|
| 165 |
sd3.text_enc_2.to(device)
|
| 166 |
sd3.text_enc_3.to(device)
|
|
|
|
| 181 |
# (by default, “model_test(...)” takes (lq_tensor, prompt=str) and returns a list[tensor])
|
| 182 |
|
| 183 |
###############################
|
| 184 |
+
# 4. Load the VLM (Qwen2.5-VL)
|
| 185 |
###############################
|
| 186 |
vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 187 |
VLM_NAME,
|
|
|
|
| 191 |
vlm_processor = AutoProcessor.from_pretrained(VLM_NAME)
|
| 192 |
|
| 193 |
###############################
|
| 194 |
+
# 5. Pre-allocate a Temporary Directory
|
| 195 |
# to hold intermediate JPEG/PNG files
|
| 196 |
###############################
|
| 197 |
unique_id = uuid.uuid4().hex
|
|
|
|
| 211 |
prev_path = os.path.join(td, "step0_prev.png")
|
| 212 |
img0.save(prev_path)
|
| 213 |
|
| 214 |
+
# We will maintain lists of PIL outputs and prompts:
|
| 215 |
sr_pil_list: list[Image.Image] = []
|
| 216 |
+
prompt_list: list[str] = []
|
| 217 |
|
| 218 |
###############################
|
| 219 |
+
# 7. Recursion loop (now up to rec_num times)
|
| 220 |
###############################
|
| 221 |
for rec in range(rec_num):
|
| 222 |
+
# (A) Load the previous SR output (or original) and compute crop window
|
| 223 |
prev_pil = Image.open(prev_path).convert("RGB")
|
| 224 |
+
w, h = prev_pil.size # should be (512×512) each time
|
| 225 |
+
|
| 226 |
+
# (1) Compute the “low-res” window size:
|
| 227 |
new_w, new_h = w // upscale, h // upscale # e.g. 128×128 for upscale=4
|
| 228 |
+
|
| 229 |
+
# (2) Map normalized center → pixel center, then clamp so crop stays in bounds:
|
| 230 |
+
cx_norm, cy_norm = centers[rec]
|
| 231 |
+
cx = int(cx_norm * w)
|
| 232 |
+
cy = int(cy_norm * h)
|
| 233 |
+
half_w = new_w // 2
|
| 234 |
+
half_h = new_h // 2
|
| 235 |
+
|
| 236 |
+
# If center in pixels is too close to left/top, clamp so left=0 or top=0; same on right/bottom
|
| 237 |
+
left = cx - half_w
|
| 238 |
+
top = cy - half_h
|
| 239 |
+
# clamp left ∈ [0, w - new_w], top ∈ [0, h - new_h]
|
| 240 |
+
left = max(0, min(left, w - new_w))
|
| 241 |
+
top = max(0, min(top, h - new_h))
|
| 242 |
right = left + new_w
|
| 243 |
bottom = top + new_h
|
| 244 |
+
|
| 245 |
cropped = prev_pil.crop((left, top, right, bottom))
|
| 246 |
|
| 247 |
# (B) Resize that crop back up to (512×512) via BICUBIC → zoomed
|
|
|
|
| 260 |
)
|
| 261 |
# (By default, no extra user prompt is appended.)
|
| 262 |
|
| 263 |
+
# (D) Prepare the low-res tensor for SR: convert zoomed → Tensor → [0,1] → [−1,1]
|
| 264 |
to_tensor = transforms.ToTensor()
|
| 265 |
lq = to_tensor(zoomed).unsqueeze(0).to(device) # shape (1,3,512,512)
|
| 266 |
lq = (lq * 2.0) - 1.0
|
|
|
|
| 284 |
# end for(rec)
|
| 285 |
|
| 286 |
###############################
|
| 287 |
+
# 8. Return the SR outputs & prompts
|
| 288 |
###############################
|
| 289 |
+
# The list sr_pil_list = [ SR1, SR2, …, SR_rec_num ] in order.
|
| 290 |
+
return sr_pil_list, prompt_list
|