# ===== 必须首先导入spaces ===== try: import spaces SPACES_AVAILABLE = True print("✅ Spaces available - ZeroGPU mode") except ImportError: SPACES_AVAILABLE = False print("⚠️ Spaces not available - running in regular mode") # ===== 其他导入 ===== import os import uuid from datetime import datetime import random import torch import gradio as gr from diffusers import DiffusionPipeline from PIL import Image import traceback import numpy as np import cv2 import imageio from pathlib import Path import tempfile import shutil # ===== 长提示词处理 ===== try: from compel import Compel, ReturnedEmbeddingsType COMPEL_AVAILABLE = True print("✅ Compel available for long prompt processing") except ImportError: COMPEL_AVAILABLE = False print("⚠️ Compel not available - using standard prompt processing") # ===== 修复后的配置 ===== STYLE_PRESETS = { "None": "", "Cinematic": "cinematic lighting, dramatic composition, film grain, professional cinematography, movie scene, high production value", "Anime": "anime style, detailed animation, high quality anime, cel animation, vibrant anime colors, smooth animation", "Realistic": "photorealistic, ultra-detailed, natural lighting, realistic motion, lifelike animation, high fidelity", "Fantasy": "fantasy style, magical atmosphere, ethereal lighting, mystical effects, enchanted scene", "Artistic": "artistic style, creative composition, unique visual style, expressive animation, stylized rendering" } # 固定模型配置 - 使用CogVideoX + LoRA架构 BASE_MODEL = "THUDM/CogVideoX-5b" # 稳定的官方base model # 实际可用的LoRA适配器列表 LORA_CONFIGS = [ { "repo_id": "hashu786/CogVideoX-LoRA-CineCam", "filename": "pytorch_lora_weights.safetensors", "adapter_name": "cinematic_camera", "scale": 0.6 }, { "repo_id": "alibaba-pai/CogVideoX-Fun-V1.1-Reward-LoRAs", "filename": "pytorch_lora_weights.safetensors", "adapter_name": "quality_reward", "scale": 0.8 } # 注意:由于是NSFW内容,暂时使用增强质量的LoRA # 您可以later添加专门的NSFW LoRA ] # 质量增强提示词 - 适配视频 QUALITY_ENHANCERS = [ "high quality video", "(masterpiece:1.3)", "(best quality:1.2)", "smooth animation", "detailed motion", "fluid movement", "professional video quality", "high resolution", "consistent lighting", "stable composition", "(perfect anatomy:1.1)", "natural motion", "cinematic quality", "detailed textures", "smooth transitions" ] # 修复后的风格专用增强词 - 视频优化 STYLE_ENHANCERS = { "Cinematic": [ "cinematic shot", "(cinematic quality:1.3)", "movie scene", "film lighting", "dramatic composition", "professional cinematography", "cinematic motion", "film grain", "dynamic camera work", "cinematic storytelling" ], "Anime": [ "anime animation", "(high quality anime:1.3)", "detailed anime", "smooth anime motion", "cel animation style", "(anime video:1.2)", "vibrant anime colors", "anime cinematics", "japanese animation", "fluid anime movement" ], "Realistic": [ "realistic video", "(photorealistic animation:1.3)", "natural motion", "lifelike movement", "realistic lighting", "(realistic video:1.2)", "natural dynamics", "authentic motion", "real-world physics", "documentary style" ], "Fantasy": [ "fantasy animation", "(magical video:1.3)", "mystical motion", "ethereal effects", "enchanted scene", "magical atmosphere", "fantasy cinematics", "surreal animation", "otherworldly movement", "magical realism" ], "Artistic": [ "artistic video", "(creative animation:1.3)", "stylized motion", "artistic composition", "unique visual style", "expressive animation", "creative cinematics", "artistic movement", "stylized rendering", "avant-garde video" ] } # 视频参数配置 - 优化帧率和时长 VIDEO_CONFIG = { "default_duration": 2.0, # 降低到2秒,更稳定 "max_duration": 4.0, # 最大4秒 "default_fps": 12, # 降低到12fps,减少GPU占用和动画速度 "max_fps": 24, # 最大24fps "default_width": 512, "default_height": 512, "max_resolution": 768 } SAVE_DIR = "generated_videos" os.makedirs(SAVE_DIR, exist_ok=True) # ===== 模型相关变量 ===== pipeline = None compel_processor = None device = None model_loaded = False def initialize_model(): """优化的模型初始化函数""" global pipeline, compel_processor, device, model_loaded if model_loaded and pipeline is not None: return True try: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"🖥️ Using device: {device}") print(f"Loading CogVideoX base model: {BASE_MODEL}") print(f"LoRA configurations: {len(LORA_CONFIGS)} adapters") # 加载基础CogVideoX模型 try: from diffusers import CogVideoXPipeline pipeline = CogVideoXPipeline.from_pretrained( BASE_MODEL, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, use_safetensors=True ) print("Successfully loaded CogVideoX base model!") # 加载LoRA适配器 for lora_config in LORA_CONFIGS: try: pipeline.load_lora_weights( lora_config["repo_id"], weight_name=lora_config["filename"], adapter_name=lora_config["adapter_name"] ) print(f"✓ Loaded LoRA: {lora_config['adapter_name']}") except Exception as lora_error: print(f"⚠ LoRA loading failed ({lora_config['adapter_name']}): {lora_error}") # 设置LoRA权重 adapter_names = [config["adapter_name"] for config in LORA_CONFIGS] adapter_weights = [config["scale"] for config in LORA_CONFIGS] if adapter_names: pipeline.set_adapters(adapter_names, adapter_weights) print(f"✓ Applied LoRA adapters with weights: {adapter_weights}") except Exception as base_error: print(f"Base model loading failed: {base_error}") print("This should not happen with official CogVideoX model") return False pipeline = pipeline.to(device) # GPU优化 - CogVideoX优化(更简单可靠) if torch.cuda.is_available(): try: if hasattr(pipeline, 'enable_model_cpu_offload'): pipeline.enable_model_cpu_offload() if hasattr(pipeline, 'enable_vae_tiling'): pipeline.enable_vae_tiling() try: pipeline.enable_xformers_memory_efficient_attention() except: pass print("CogVideoX memory optimizations applied") except Exception as mem_error: print(f"Memory optimization warning: {mem_error}") # 初始化Compel if COMPEL_AVAILABLE and hasattr(pipeline, 'tokenizer'): try: compel_processor = Compel( tokenizer=pipeline.tokenizer, text_encoder=pipeline.text_encoder, returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, truncate_long_prompts=False ) print("✅ Long prompt processor (Compel) initialized successfully") except Exception as compel_error: print(f"⚠️ Compel initialization failed: {compel_error}") compel_processor = None model_loaded = True print("✅ T2V Model initialization complete") return True except Exception as e: print(f"❌ Critical model loading error: {e}") print(traceback.format_exc()) model_loaded = False return False def enhance_prompt(prompt: str, style: str) -> str: """修复后的增强提示词函数 - 视频优化""" if not prompt or prompt.strip() == "": return "" enhanced_parts = [prompt.strip()] # 添加风格前缀 style_prefix = STYLE_PRESETS.get(style, "") if style_prefix and style != "None": enhanced_parts.insert(0, style_prefix) # 添加风格特定增强词 if style in STYLE_ENHANCERS and style != "None": style_terms = ", ".join(STYLE_ENHANCERS[style]) enhanced_parts.append(style_terms) # 添加质量增强词 quality_terms = ", ".join(QUALITY_ENHANCERS) enhanced_parts.append(quality_terms) enhanced_prompt = ", ".join(filter(None, enhanced_parts)) print(f"🎨 Style: {style}") print(f"📝 Original prompt: {prompt[:100]}...") print(f"✨ Enhanced prompt: {enhanced_prompt[:150]}...") return enhanced_prompt def process_long_prompt(prompt, negative_prompt=""): """处理长提示词""" if not compel_processor: return None, None try: conditioning = compel_processor([prompt, negative_prompt]) return conditioning, None except Exception as e: print(f"Long prompt processing failed: {e}") return None, None def apply_spaces_decorator(func): """应用spaces装饰器 - 增加超时时间""" if SPACES_AVAILABLE: return spaces.GPU(duration=120)(func) # 2分钟超时 return func def create_metadata_content(prompt, enhanced_prompt, seed, steps, cfg_scale, width, height, duration, fps, style): """创建元数据内容 - 视频版本""" timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") return f"""Generated Video Metadata ====================== Timestamp: {timestamp} Original Prompt: {prompt} Enhanced Prompt: {enhanced_prompt} Seed: {seed} Steps: {steps} CFG Scale: {cfg_scale} Dimensions: {width}×{height} Duration: {duration}s FPS: {fps} Style: {style} Model: NSFW_Wan_14b Total Frames: {int(duration * fps)} """ def frames_to_video(frames, output_path, fps=24, format="mp4"): """将帧序列转换为视频文件""" try: if format.lower() == "gif": # 生成GIF imageio.mimsave(output_path, frames, fps=fps, loop=0) else: # 生成MP4 writer = imageio.get_writer(output_path, fps=fps, codec='libx264', quality=8) for frame in frames: if isinstance(frame, Image.Image): frame = np.array(frame) writer.append_data(frame) writer.close() return True except Exception as e: print(f"Video creation error: {e}") return False @apply_spaces_decorator def generate_video(prompt: str, style: str, negative_prompt: str = "", steps: int = 20, cfg_scale: float = 7.0, seed: int = -1, width: int = 512, height: int = 512, duration: float = 4.0, fps: int = 24, progress=gr.Progress()): """视频生成函数""" if not prompt or prompt.strip() == "": return None, None, "", "" # 初始化模型 progress(0.1, desc="Loading T2V model...") if not initialize_model(): return None, None, "", "❌ Failed to load T2V model" progress(0.2, desc="Processing prompt...") try: # 处理seed if seed == -1: seed = random.randint(0, np.iinfo(np.int32).max) # 增强提示词 enhanced_prompt = enhance_prompt(prompt.strip(), style) # 增强负面提示词 if not negative_prompt.strip(): negative_prompt = "(low quality, worst quality:1.4), (bad anatomy:1.2), blurry, watermark, signature, text, error, distorted motion, choppy animation, inconsistent lighting, frame drops, stuttering" # 计算帧数 num_frames = int(duration * fps) print(f"🎬 Generating {num_frames} frames at {fps} FPS for {duration}s video") # 生成参数 generator = torch.Generator(device).manual_seed(seed) progress(0.3, desc=f"Generating {duration}s video...") # 长提示词处理 use_long_prompt = len(enhanced_prompt.split()) > 60 or len(enhanced_prompt) > 300 generation_kwargs = { "num_inference_steps": steps, "guidance_scale": cfg_scale, "width": width, "height": height, "num_frames": num_frames, "generator": generator } if use_long_prompt and compel_processor: conditioning, _ = process_long_prompt(enhanced_prompt, negative_prompt) if conditioning is not None: result = pipeline( prompt_embeds=conditioning[0:1], negative_prompt_embeds=conditioning[1:2], **generation_kwargs ) else: result = pipeline( prompt=enhanced_prompt, negative_prompt=negative_prompt, **generation_kwargs ) else: result = pipeline( prompt=enhanced_prompt, negative_prompt=negative_prompt, **generation_kwargs ) progress(0.8, desc="Processing video output...") # 获取视频帧 if hasattr(result, 'frames') and result.frames is not None: frames = result.frames[0] # 取第一个批次 elif hasattr(result, 'images') and result.images is not None: frames = result.images else: return None, None, "", "❌ No frames generated from model" print(f"📹 Generated {len(frames)} frames") # 创建临时文件 with tempfile.TemporaryDirectory() as temp_dir: # 生成MP4 mp4_path = os.path.join(temp_dir, f"video_{seed}.mp4") mp4_success = frames_to_video(frames, mp4_path, fps=fps, format="mp4") # 生成GIF gif_path = os.path.join(temp_dir, f"video_{seed}.gif") gif_success = frames_to_video(frames, gif_path, fps=fps, format="gif") if not mp4_success and not gif_success: return None, None, "", "❌ Failed to create video files" # 复制到永久目录 final_mp4_path = None final_gif_path = None if mp4_success: final_mp4_path = os.path.join(SAVE_DIR, f"video_{seed}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4") shutil.copy2(mp4_path, final_mp4_path) if gif_success: final_gif_path = os.path.join(SAVE_DIR, f"video_{seed}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.gif") shutil.copy2(gif_path, final_gif_path) progress(0.95, desc="Creating metadata...") # 创建元数据内容 metadata_content = create_metadata_content( prompt, enhanced_prompt, seed, steps, cfg_scale, width, height, duration, fps, style ) progress(1.0, desc="Complete!") # 生成信息显示 generation_info = f"Style: {style} | Seed: {seed} | Size: {width}×{height} | Duration: {duration}s | FPS: {fps} | Frames: {num_frames}" # 返回MP4路径用于显示,同时提供两种格式的下载 return final_mp4_path, final_gif_path, generation_info, metadata_content except Exception as e: error_msg = str(e) print(f"Generation error: {error_msg}") print(traceback.format_exc()) return None, None, "", f"❌ Generation failed: {error_msg}" # ===== CSS样式 - 视频版本 ===== css = """ /* 全局容器 */ .gradio-container { max-width: 100% !important; margin: 0 !important; padding: 0 !important; background: linear-gradient(135deg, #e6a4f2 0%, #1197e4 100%) !important; min-height: 100vh !important; font-family: 'Segoe UI', Arial, sans-serif !important; } /* 主要内容区域 */ .main-content { background: rgba(255, 255, 255, 0.9) !important; border-radius: 20px !important; padding: 20px !important; margin: 15px !important; box-shadow: 0 10px 25px rgba(255, 255, 255, 0.2) !important; min-height: calc(100vh - 30px) !important; color: #3e3e3e !important; backdrop-filter: blur(10px) !important; } /* 简化标题 */ .title { text-align: center !important; background: linear-gradient(45deg, #bb6ded, #08676b) !important; -webkit-background-clip: text !important; -webkit-text-fill-color: transparent !important; background-clip: text !important; font-size: 2rem !important; margin-bottom: 15px !important; font-weight: bold !important; } /* 简化警告信息 */ .warning-box { background: linear-gradient(45deg, #bb6ded, #08676b) !important; color: white !important; padding: 8px !important; border-radius: 8px !important; margin-bottom: 15px !important; text-align: center !important; font-weight: bold !important; font-size: 14px !important; } /* 输入框样式 - 修复背景色 */ .prompt-box textarea, .prompt-box input { border-radius: 10px !important; border: 2px solid #bb6ded !important; padding: 15px !important; font-size: 18px !important; background: linear-gradient(135deg, rgba(245, 243, 255, 0.9), rgba(237, 233, 254, 0.9)) !important; color: #2d2d2d !important; } .prompt-box textarea:focus, .prompt-box input:focus { border-color: #08676b !important; box-shadow: 0 0 15px rgba(77, 8, 161, 0.3) !important; background: linear-gradient(135deg, rgba(255, 255, 255, 0.95), rgba(248, 249, 250, 0.95)) !important; } /* 右侧控制区域 - 修复背景色 */ .controls-section { background: linear-gradient(135deg, rgba(224, 218, 255, 0.8), rgba(196, 181, 253, 0.8)) !important; border-radius: 12px !important; padding: 15px !important; margin-bottom: 8px !important; border: 2px solid rgba(187, 109, 237, 0.3) !important; backdrop-filter: blur(5px) !important; } .controls-section label { font-weight: 600 !important; color: #2d2d2d !important; margin-bottom: 8px !important; } /* 修复单选按钮和输入框背景 */ .controls-section input[type="radio"] { accent-color: #bb6ded !important; } .controls-section input[type="number"], .controls-section input[type="range"] { background: rgba(255, 255, 255, 0.9) !important; border: 1px solid #bb6ded !important; border-radius: 6px !important; padding: 8px !important; color: #2d2d2d !important; } .controls-section select { background: rgba(255, 255, 255, 0.9) !important; border: 1px solid #bb6ded !important; border-radius: 6px !important; padding: 8px !important; color: #2d2d2d !important; } /* 生成按钮 */ .generate-btn { background: linear-gradient(45deg, #bb6ded, #08676b) !important; color: white !important; border: none !important; padding: 15px 25px !important; border-radius: 25px !important; font-size: 16px !important; font-weight: bold !important; width: 100% !important; cursor: pointer !important; transition: all 0.3s ease !important; text-transform: uppercase !important; letter-spacing: 1px !important; } .generate-btn:hover { transform: translateY(-2px) !important; box-shadow: 0 8px 25px rgba(187, 109, 237, 0.5) !important; } /* 视频输出区域 */ .video-output { border-radius: 15px !important; overflow: hidden !important; max-width: 100% !important; max-height: 70vh !important; border: 3px solid #08676b !important; box-shadow: 0 8px 20px rgba(0,0,0,0.15) !important; background: linear-gradient(135deg, rgba(255, 255, 255, 0.9), rgba(248, 249, 250, 0.9)) !important; } /* 下载按钮样式 */ .download-btn { background: linear-gradient(45deg, #28a745, #20c997) !important; color: white !important; border: none !important; padding: 10px 20px !important; border-radius: 20px !important; font-size: 14px !important; font-weight: bold !important; margin: 5px !important; cursor: pointer !important; transition: all 0.3s ease !important; } .download-btn:hover { transform: translateY(-1px) !important; box-shadow: 0 5px 15px rgba(40, 167, 69, 0.4) !important; } /* 视频信息区域 */ .video-info { background: linear-gradient(135deg, rgba(248, 249, 250, 0.2), rgba(233, 236, 239, 0.9)) !important; border-radius: 8px !important; padding: 12px !important; margin-top: 10px !important; font-size: 12px !important; color: #495057 !important; border: 2px solid rgba(187, 109, 237, 0.2) !important; backdrop-filter: blur(5px) !important; } /* 元数据区域样式 */ .metadata-box { background: linear-gradient(135deg, rgba(248, 249, 250, 0.2), rgba(233, 236, 239, 0.9)) !important; border-radius: 8px !important; padding: 15px !important; margin-top: 15px !important; font-family: 'Courier New', monospace !important; font-size: 12px !important; color: #495057 !important; border: 2px solid rgba(187, 109, 237, 0.2) !important; backdrop-filter: blur(5px) !important; white-space: pre-wrap !important; overflow-y: auto !important; max-height: 300px !important; } /* 滑块样式 */ .slider-container input[type="range"] { accent-color: #bb6ded !important; } /* 响应式设计 */ @media (max-width: 768px) { .main-content { margin: 10px !important; padding: 15px !important; } .title { font-size: 1.5rem !important; } } /* 强制覆盖Gradio默认样式 */ .gradio-container .gr-textbox, .gradio-container .gr-radio-group, .gradio-container .gr-slider, .gradio-container .gr-number { background: rgba(255, 255, 255, 0.95) !important; border: 1px solid rgba(187, 109, 237, 0.5) !important; border-radius: 8px !important; } .gradio-container .gr-radio-group label { color: #2d2d2d !important; background: transparent !important; } """ # ===== 创建UI ===== def create_interface(): with gr.Blocks(css=css, title="Adult NSFW AI Video Generator") as interface: with gr.Column(elem_classes=["main-content"]): # 简化标题 gr.HTML('