File size: 32,957 Bytes
29f70b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bb3cf9
29f70b5
 
 
8bb3cf9
29f70b5
 
 
 
 
8bb3cf9
29f70b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c47d675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bb3cf9
29f70b5
 
 
 
 
 
8bb3cf9
 
29f70b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bb3cf9
 
feffbe5
29f70b5
feffbe5
 
 
 
29f70b5
 
 
 
8bb3cf9
29f70b5
 
8bb3cf9
29f70b5
 
 
 
 
8bb3cf9
29f70b5
 
 
 
 
 
 
 
 
 
 
c47d675
 
29f70b5
c47d675
29f70b5
c47d675
 
 
29f70b5
c47d675
29f70b5
c47d675
 
 
 
 
 
 
 
 
 
 
 
 
d933597
c47d675
 
 
 
 
 
740dcb4
c47d675
 
 
 
29f70b5
 
 
c47d675
29f70b5
 
feffbe5
c47d675
1aa6f43
c47d675
29f70b5
 
 
 
c47d675
29f70b5
1aa6f43
29f70b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bb3cf9
29f70b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bb3cf9
29f70b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bb3cf9
29f70b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bb3cf9
29f70b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d933597
29f70b5
 
 
 
8bb3cf9
29f70b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bb3cf9
29f70b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bb3cf9
29f70b5
 
8bb3cf9
29f70b5
 
 
 
 
 
 
 
8bb3cf9
29f70b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bb3cf9
29f70b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bb3cf9
29f70b5
8bb3cf9
29f70b5
740dcb4
29f70b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
# ===== 必须首先导入spaces =====
try:
    import spaces
    SPACES_AVAILABLE = True
    print("✅ Spaces available - ZeroGPU mode")
except ImportError:
    SPACES_AVAILABLE = False
    print("⚠️ Spaces not available - running in regular mode")

# ===== 其他导入 =====
import os
import uuid
from datetime import datetime
import random
import torch
import gradio as gr
from diffusers import DiffusionPipeline
from PIL import Image
import traceback
import numpy as np
import cv2
import imageio
from pathlib import Path
import tempfile
import shutil

# ===== 长提示词处理 =====
try:
    from compel import Compel, ReturnedEmbeddingsType
    COMPEL_AVAILABLE = True
    print("✅ Compel available for long prompt processing")
except ImportError:
    COMPEL_AVAILABLE = False
    print("⚠️ Compel not available - using standard prompt processing")

# ===== 修复后的配置 =====
STYLE_PRESETS = {
    "None": "",
    "Cinematic": "cinematic lighting, dramatic composition, film grain, professional cinematography, movie scene, high production value",
    "Anime": "anime style, detailed animation, high quality anime, cel animation, vibrant anime colors, smooth animation",
    "Realistic": "photorealistic, ultra-detailed, natural lighting, realistic motion, lifelike animation, high fidelity",
    "Fantasy": "fantasy style, magical atmosphere, ethereal lighting, mystical effects, enchanted scene",
    "Artistic": "artistic style, creative composition, unique visual style, expressive animation, stylized rendering"
}

# 固定模型配置 - 使用CogVideoX + LoRA架构
BASE_MODEL = "THUDM/CogVideoX-5b"  # 稳定的官方base model
# 实际可用的LoRA适配器列表
LORA_CONFIGS = [
    {
        "repo_id": "hashu786/CogVideoX-LoRA-CineCam",
        "filename": "pytorch_lora_weights.safetensors", 
        "adapter_name": "cinematic_camera",
        "scale": 0.6
    },
    {
        "repo_id": "alibaba-pai/CogVideoX-Fun-V1.1-Reward-LoRAs",
        "filename": "pytorch_lora_weights.safetensors",
        "adapter_name": "quality_reward", 
        "scale": 0.8
    }
    # 注意:由于是NSFW内容,暂时使用增强质量的LoRA
    # 您可以later添加专门的NSFW LoRA
]

# 质量增强提示词 - 适配视频
QUALITY_ENHANCERS = [
    "high quality video", "(masterpiece:1.3)", "(best quality:1.2)", "smooth animation",
    "detailed motion", "fluid movement", "professional video quality", "high resolution",
    "consistent lighting", "stable composition", "(perfect anatomy:1.1)", "natural motion",
    "cinematic quality", "detailed textures", "smooth transitions"
]

# 修复后的风格专用增强词 - 视频优化
STYLE_ENHANCERS = {
    "Cinematic": [
        "cinematic shot", "(cinematic quality:1.3)", "movie scene", "film lighting", 
        "dramatic composition", "professional cinematography", "cinematic motion", "film grain",
        "dynamic camera work", "cinematic storytelling"
    ],
    "Anime": [
        "anime animation", "(high quality anime:1.3)", "detailed anime", "smooth anime motion", 
        "cel animation style", "(anime video:1.2)", "vibrant anime colors", "anime cinematics",
        "japanese animation", "fluid anime movement"
    ],
    "Realistic": [
        "realistic video", "(photorealistic animation:1.3)", "natural motion", "lifelike movement", 
        "realistic lighting", "(realistic video:1.2)", "natural dynamics", "authentic motion",
        "real-world physics", "documentary style"
    ],
    "Fantasy": [
        "fantasy animation", "(magical video:1.3)", "mystical motion", "ethereal effects", 
        "enchanted scene", "magical atmosphere", "fantasy cinematics", "surreal animation",
        "otherworldly movement", "magical realism"
    ],
    "Artistic": [
        "artistic video", "(creative animation:1.3)", "stylized motion", "artistic composition", 
        "unique visual style", "expressive animation", "creative cinematics", "artistic movement",
        "stylized rendering", "avant-garde video"
    ]
}

# 视频参数配置 - 优化帧率和时长
VIDEO_CONFIG = {
    "default_duration": 2.0,  # 降低到2秒,更稳定
    "max_duration": 4.0,      # 最大4秒
    "default_fps": 12,        # 降低到12fps,减少GPU占用和动画速度
    "max_fps": 24,            # 最大24fps
    "default_width": 512,
    "default_height": 512,
    "max_resolution": 768
}

SAVE_DIR = "generated_videos"
os.makedirs(SAVE_DIR, exist_ok=True)

# ===== 模型相关变量 =====
pipeline = None
compel_processor = None
device = None
model_loaded = False

def initialize_model():
    """优化的模型初始化函数"""
    global pipeline, compel_processor, device, model_loaded
    
    if model_loaded and pipeline is not None:
        return True
    
    try:
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        print(f"🖥️ Using device: {device}")
        
        print(f"Loading CogVideoX base model: {BASE_MODEL}")
        print(f"LoRA configurations: {len(LORA_CONFIGS)} adapters")
        
        # 加载基础CogVideoX模型
        try:
            from diffusers import CogVideoXPipeline
            pipeline = CogVideoXPipeline.from_pretrained(
                BASE_MODEL,
                torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
                use_safetensors=True
            )
            print("Successfully loaded CogVideoX base model!")
            
            # 加载LoRA适配器
            for lora_config in LORA_CONFIGS:
                try:
                    pipeline.load_lora_weights(
                        lora_config["repo_id"],
                        weight_name=lora_config["filename"],
                        adapter_name=lora_config["adapter_name"]
                    )
                    print(f"✓ Loaded LoRA: {lora_config['adapter_name']}")
                except Exception as lora_error:
                    print(f"⚠ LoRA loading failed ({lora_config['adapter_name']}): {lora_error}")
            
            # 设置LoRA权重
            adapter_names = [config["adapter_name"] for config in LORA_CONFIGS]
            adapter_weights = [config["scale"] for config in LORA_CONFIGS]
            if adapter_names:
                pipeline.set_adapters(adapter_names, adapter_weights)
                print(f"✓ Applied LoRA adapters with weights: {adapter_weights}")
            
        except Exception as base_error:
            print(f"Base model loading failed: {base_error}")
            print("This should not happen with official CogVideoX model")
            return False
        
        pipeline = pipeline.to(device)
        
        # GPU优化 - CogVideoX优化(更简单可靠)
        if torch.cuda.is_available():
            try:
                if hasattr(pipeline, 'enable_model_cpu_offload'):
                    pipeline.enable_model_cpu_offload()
                if hasattr(pipeline, 'enable_vae_tiling'):
                    pipeline.enable_vae_tiling()
                try:
                    pipeline.enable_xformers_memory_efficient_attention()
                except:
                    pass
                print("CogVideoX memory optimizations applied")
            except Exception as mem_error:
                print(f"Memory optimization warning: {mem_error}")
        
        # 初始化Compel
        if COMPEL_AVAILABLE and hasattr(pipeline, 'tokenizer'):
            try:
                compel_processor = Compel(
                    tokenizer=pipeline.tokenizer,
                    text_encoder=pipeline.text_encoder,
                    returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
                    truncate_long_prompts=False
                )
                print("✅ Long prompt processor (Compel) initialized successfully")
            except Exception as compel_error:
                print(f"⚠️ Compel initialization failed: {compel_error}")
                compel_processor = None
        
        model_loaded = True
        print("✅ T2V Model initialization complete")
        return True
        
    except Exception as e:
        print(f"❌ Critical model loading error: {e}")
        print(traceback.format_exc())
        model_loaded = False
        return False

def enhance_prompt(prompt: str, style: str) -> str:
    """修复后的增强提示词函数 - 视频优化"""
    if not prompt or prompt.strip() == "":
        return ""
    
    enhanced_parts = [prompt.strip()]
    
    # 添加风格前缀
    style_prefix = STYLE_PRESETS.get(style, "")
    if style_prefix and style != "None":
        enhanced_parts.insert(0, style_prefix)
    
    # 添加风格特定增强词
    if style in STYLE_ENHANCERS and style != "None":
        style_terms = ", ".join(STYLE_ENHANCERS[style])
        enhanced_parts.append(style_terms)
    
    # 添加质量增强词
    quality_terms = ", ".join(QUALITY_ENHANCERS)
    enhanced_parts.append(quality_terms)
    
    enhanced_prompt = ", ".join(filter(None, enhanced_parts))
    
    print(f"🎨 Style: {style}")
    print(f"📝 Original prompt: {prompt[:100]}...")
    print(f"✨ Enhanced prompt: {enhanced_prompt[:150]}...")
    
    return enhanced_prompt

def process_long_prompt(prompt, negative_prompt=""):
    """处理长提示词"""
    if not compel_processor:
        return None, None
    
    try:
        conditioning = compel_processor([prompt, negative_prompt])
        return conditioning, None
    except Exception as e:
        print(f"Long prompt processing failed: {e}")
        return None, None

def apply_spaces_decorator(func):
    """应用spaces装饰器 - 增加超时时间"""
    if SPACES_AVAILABLE:
        return spaces.GPU(duration=120)(func)  # 2分钟超时
    return func

def create_metadata_content(prompt, enhanced_prompt, seed, steps, cfg_scale, width, height, duration, fps, style):
    """创建元数据内容 - 视频版本"""
    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    return f"""Generated Video Metadata
======================
Timestamp: {timestamp}
Original Prompt: {prompt}
Enhanced Prompt: {enhanced_prompt}
Seed: {seed}
Steps: {steps}
CFG Scale: {cfg_scale}
Dimensions: {width}×{height}
Duration: {duration}s
FPS: {fps}
Style: {style}
Model: NSFW_Wan_14b
Total Frames: {int(duration * fps)}
"""

def frames_to_video(frames, output_path, fps=24, format="mp4"):
    """将帧序列转换为视频文件"""
    try:
        if format.lower() == "gif":
            # 生成GIF
            imageio.mimsave(output_path, frames, fps=fps, loop=0)
        else:
            # 生成MP4
            writer = imageio.get_writer(output_path, fps=fps, codec='libx264', quality=8)
            for frame in frames:
                if isinstance(frame, Image.Image):
                    frame = np.array(frame)
                writer.append_data(frame)
            writer.close()
        
        return True
    except Exception as e:
        print(f"Video creation error: {e}")
        return False

@apply_spaces_decorator
def generate_video(prompt: str, style: str, negative_prompt: str = "", steps: int = 20, cfg_scale: float = 7.0, 
                  seed: int = -1, width: int = 512, height: int = 512, duration: float = 4.0, fps: int = 24,
                  progress=gr.Progress()):
    """视频生成函数"""
    if not prompt or prompt.strip() == "":
        return None, None, "", ""
    
    # 初始化模型
    progress(0.1, desc="Loading T2V model...")
    if not initialize_model():
        return None, None, "", "❌ Failed to load T2V model"
    
    progress(0.2, desc="Processing prompt...")
    
    try:
        # 处理seed
        if seed == -1:
            seed = random.randint(0, np.iinfo(np.int32).max)
        
        # 增强提示词
        enhanced_prompt = enhance_prompt(prompt.strip(), style)
        
        # 增强负面提示词
        if not negative_prompt.strip():
            negative_prompt = "(low quality, worst quality:1.4), (bad anatomy:1.2), blurry, watermark, signature, text, error, distorted motion, choppy animation, inconsistent lighting, frame drops, stuttering"
        
        # 计算帧数
        num_frames = int(duration * fps)
        print(f"🎬 Generating {num_frames} frames at {fps} FPS for {duration}s video")
        
        # 生成参数
        generator = torch.Generator(device).manual_seed(seed)
        
        progress(0.3, desc=f"Generating {duration}s video...")
        
        # 长提示词处理
        use_long_prompt = len(enhanced_prompt.split()) > 60 or len(enhanced_prompt) > 300
        
        generation_kwargs = {
            "num_inference_steps": steps,
            "guidance_scale": cfg_scale,
            "width": width,
            "height": height,
            "num_frames": num_frames,
            "generator": generator
        }
        
        if use_long_prompt and compel_processor:
            conditioning, _ = process_long_prompt(enhanced_prompt, negative_prompt)
            if conditioning is not None:
                result = pipeline(
                    prompt_embeds=conditioning[0:1],
                    negative_prompt_embeds=conditioning[1:2],
                    **generation_kwargs
                )
            else:
                result = pipeline(
                    prompt=enhanced_prompt,
                    negative_prompt=negative_prompt,
                    **generation_kwargs
                )
        else:
            result = pipeline(
                prompt=enhanced_prompt,
                negative_prompt=negative_prompt,
                **generation_kwargs
            )
        
        progress(0.8, desc="Processing video output...")
        
        # 获取视频帧
        if hasattr(result, 'frames') and result.frames is not None:
            frames = result.frames[0]  # 取第一个批次
        elif hasattr(result, 'images') and result.images is not None:
            frames = result.images
        else:
            return None, None, "", "❌ No frames generated from model"
        
        print(f"📹 Generated {len(frames)} frames")
        
        # 创建临时文件
        with tempfile.TemporaryDirectory() as temp_dir:
            # 生成MP4
            mp4_path = os.path.join(temp_dir, f"video_{seed}.mp4")
            mp4_success = frames_to_video(frames, mp4_path, fps=fps, format="mp4")
            
            # 生成GIF
            gif_path = os.path.join(temp_dir, f"video_{seed}.gif")
            gif_success = frames_to_video(frames, gif_path, fps=fps, format="gif")
            
            if not mp4_success and not gif_success:
                return None, None, "", "❌ Failed to create video files"
            
            # 复制到永久目录
            final_mp4_path = None
            final_gif_path = None
            
            if mp4_success:
                final_mp4_path = os.path.join(SAVE_DIR, f"video_{seed}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4")
                shutil.copy2(mp4_path, final_mp4_path)
            
            if gif_success:
                final_gif_path = os.path.join(SAVE_DIR, f"video_{seed}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.gif")
                shutil.copy2(gif_path, final_gif_path)
        
        progress(0.95, desc="Creating metadata...")
        
        # 创建元数据内容
        metadata_content = create_metadata_content(
            prompt, enhanced_prompt, seed, steps, cfg_scale, width, height, duration, fps, style
        )
        
        progress(1.0, desc="Complete!")
        
        # 生成信息显示
        generation_info = f"Style: {style} | Seed: {seed} | Size: {width}×{height} | Duration: {duration}s | FPS: {fps} | Frames: {num_frames}"
        
        # 返回MP4路径用于显示,同时提供两种格式的下载
        return final_mp4_path, final_gif_path, generation_info, metadata_content
        
    except Exception as e:
        error_msg = str(e)
        print(f"Generation error: {error_msg}")
        print(traceback.format_exc())
        return None, None, "", f"❌ Generation failed: {error_msg}"

# ===== CSS样式 - 视频版本 =====
css = """
/* 全局容器 */
.gradio-container {
    max-width: 100% !important;
    margin: 0 !important;
    padding: 0 !important;
    background: linear-gradient(135deg, #e6a4f2 0%, #1197e4 100%) !important;
    min-height: 100vh !important;
    font-family: 'Segoe UI', Arial, sans-serif !important;
}

/* 主要内容区域 */
.main-content {
    background: rgba(255, 255, 255, 0.9) !important;
    border-radius: 20px !important;
    padding: 20px !important;
    margin: 15px !important;
    box-shadow: 0 10px 25px rgba(255, 255, 255, 0.2) !important;
    min-height: calc(100vh - 30px) !important;
    color: #3e3e3e !important;
    backdrop-filter: blur(10px) !important;
}

/* 简化标题 */
.title {
    text-align: center !important;
    background: linear-gradient(45deg, #bb6ded, #08676b) !important;
    -webkit-background-clip: text !important;
    -webkit-text-fill-color: transparent !important;
    background-clip: text !important;
    font-size: 2rem !important;
    margin-bottom: 15px !important;
    font-weight: bold !important;
}

/* 简化警告信息 */
.warning-box {
    background: linear-gradient(45deg, #bb6ded, #08676b) !important;
    color: white !important;
    padding: 8px !important;
    border-radius: 8px !important;
    margin-bottom: 15px !important;
    text-align: center !important;
    font-weight: bold !important;
    font-size: 14px !important;
}

/* 输入框样式 - 修复背景色 */
.prompt-box textarea, .prompt-box input {
    border-radius: 10px !important;
    border: 2px solid #bb6ded !important;
    padding: 15px !important;
    font-size: 18px !important;
    background: linear-gradient(135deg, rgba(245, 243, 255, 0.9), rgba(237, 233, 254, 0.9)) !important;
    color: #2d2d2d !important;
}

.prompt-box textarea:focus, .prompt-box input:focus {
    border-color: #08676b !important;
    box-shadow: 0 0 15px rgba(77, 8, 161, 0.3) !important;
    background: linear-gradient(135deg, rgba(255, 255, 255, 0.95), rgba(248, 249, 250, 0.95)) !important;
}

/* 右侧控制区域 - 修复背景色 */
.controls-section {
    background: linear-gradient(135deg, rgba(224, 218, 255, 0.8), rgba(196, 181, 253, 0.8)) !important;
    border-radius: 12px !important;
    padding: 15px !important;
    margin-bottom: 8px !important;
    border: 2px solid rgba(187, 109, 237, 0.3) !important;
    backdrop-filter: blur(5px) !important;
}

.controls-section label {
    font-weight: 600 !important;
    color: #2d2d2d !important;
    margin-bottom: 8px !important;
}

/* 修复单选按钮和输入框背景 */
.controls-section input[type="radio"] {
    accent-color: #bb6ded !important;
}

.controls-section input[type="number"], 
.controls-section input[type="range"] {
    background: rgba(255, 255, 255, 0.9) !important;
    border: 1px solid #bb6ded !important;
    border-radius: 6px !important;
    padding: 8px !important;
    color: #2d2d2d !important;
}

.controls-section select {
    background: rgba(255, 255, 255, 0.9) !important;
    border: 1px solid #bb6ded !important;
    border-radius: 6px !important;
    padding: 8px !important;
    color: #2d2d2d !important;
}

/* 生成按钮 */
.generate-btn {
    background: linear-gradient(45deg, #bb6ded, #08676b) !important;
    color: white !important;
    border: none !important;
    padding: 15px 25px !important;
    border-radius: 25px !important;
    font-size: 16px !important;
    font-weight: bold !important;
    width: 100% !important;
    cursor: pointer !important;
    transition: all 0.3s ease !important;
    text-transform: uppercase !important;
    letter-spacing: 1px !important;
}

.generate-btn:hover {
    transform: translateY(-2px) !important;
    box-shadow: 0 8px 25px rgba(187, 109, 237, 0.5) !important;
}

/* 视频输出区域 */
.video-output {
    border-radius: 15px !important;
    overflow: hidden !important;
    max-width: 100% !important;
    max-height: 70vh !important;
    border: 3px solid #08676b !important;
    box-shadow: 0 8px 20px rgba(0,0,0,0.15) !important;
    background: linear-gradient(135deg, rgba(255, 255, 255, 0.9), rgba(248, 249, 250, 0.9)) !important;
}

/* 下载按钮样式 */
.download-btn {
    background: linear-gradient(45deg, #28a745, #20c997) !important;
    color: white !important;
    border: none !important;
    padding: 10px 20px !important;
    border-radius: 20px !important;
    font-size: 14px !important;
    font-weight: bold !important;
    margin: 5px !important;
    cursor: pointer !important;
    transition: all 0.3s ease !important;
}

.download-btn:hover {
    transform: translateY(-1px) !important;
    box-shadow: 0 5px 15px rgba(40, 167, 69, 0.4) !important;
}

/* 视频信息区域 */
.video-info {
    background: linear-gradient(135deg, rgba(248, 249, 250, 0.2), rgba(233, 236, 239, 0.9)) !important;
    border-radius: 8px !important;
    padding: 12px !important;
    margin-top: 10px !important;
    font-size: 12px !important;
    color: #495057 !important;
    border: 2px solid rgba(187, 109, 237, 0.2) !important;
    backdrop-filter: blur(5px) !important;
}

/* 元数据区域样式 */
.metadata-box {
    background: linear-gradient(135deg, rgba(248, 249, 250, 0.2), rgba(233, 236, 239, 0.9)) !important;
    border-radius: 8px !important;
    padding: 15px !important;
    margin-top: 15px !important;
    font-family: 'Courier New', monospace !important;
    font-size: 12px !important;
    color: #495057 !important;
    border: 2px solid rgba(187, 109, 237, 0.2) !important;
    backdrop-filter: blur(5px) !important;
    white-space: pre-wrap !important;
    overflow-y: auto !important;
    max-height: 300px !important;
}

/* 滑块样式 */
.slider-container input[type="range"] {
    accent-color: #bb6ded !important;
}

/* 响应式设计 */
@media (max-width: 768px) {
    .main-content {
        margin: 10px !important;
        padding: 15px !important;
    }
    
    .title {
        font-size: 1.5rem !important;
    }
}

/* 强制覆盖Gradio默认样式 */
.gradio-container .gr-textbox, 
.gradio-container .gr-radio-group,
.gradio-container .gr-slider,
.gradio-container .gr-number {
    background: rgba(255, 255, 255, 0.95) !important;
    border: 1px solid rgba(187, 109, 237, 0.5) !important;
    border-radius: 8px !important;
}

.gradio-container .gr-radio-group label {
    color: #2d2d2d !important;
    background: transparent !important;
}
"""

# ===== 创建UI =====
def create_interface():
    with gr.Blocks(css=css, title="Adult NSFW AI Video Generator") as interface:
        with gr.Column(elem_classes=["main-content"]):
            # 简化标题
            gr.HTML('<div class="title">🎬 Adult NSFW AI Video Generator</div>')
            
            # 简化警告信息
            gr.HTML('''
                <div class="warning-box">
                    ⚠️ 18+ CONTENT WARNING ⚠️ | Model: NSFW_Wan_14b → CogVideoX Architecture
                </div>
            ''')
            
            # 主要输入区域
            with gr.Row():
                # 左侧:提示词输入
                with gr.Column(scale=2):
                    prompt_input = gr.Textbox(
                        label="Detailed Video Prompt",
                        placeholder="Describe the video scene you want to generate...",
                        lines=12,
                        elem_classes=["prompt-box"]
                    )
                    
                    negative_prompt_input = gr.Textbox(
                        label="Negative Prompt (Optional)",
                        placeholder="Things you don't want in the video...",
                        lines=4,
                        elem_classes=["prompt-box"]
                    )
                
                # 右侧:控制选项
                with gr.Column(scale=1):
                    # Style选项
                    with gr.Group(elem_classes=["controls-section"]):
                        style_input = gr.Radio(
                            label="Style Preset",
                            choices=list(STYLE_PRESETS.keys()),
                            value="Cinematic"
                        )
                    
                    # 视频参数
                    with gr.Group(elem_classes=["controls-section"]):
                        gr.HTML("<b>📹 Video Settings</b>")
                        duration_input = gr.Slider(
                            label=f"Duration (seconds)",
                            minimum=1.0,
                            maximum=VIDEO_CONFIG["max_duration"],
                            value=VIDEO_CONFIG["default_duration"],
                            step=0.5
                        )
                        
                        fps_input = gr.Slider(
                            label="FPS (Frames per Second)",
                            minimum=12,
                            maximum=VIDEO_CONFIG["max_fps"],
                            value=VIDEO_CONFIG["default_fps"],
                            step=6
                        )
                    
                    # 分辨率设置
                    with gr.Group(elem_classes=["controls-section"]):
                        gr.HTML("<b>📐 Resolution</b>")
                        width_input = gr.Slider(
                            label="Width",
                            minimum=256,
                            maximum=VIDEO_CONFIG["max_resolution"],
                            value=VIDEO_CONFIG["default_width"],
                            step=64
                        )
                        
                        height_input = gr.Slider(
                            label="Height",
                            minimum=256,
                            maximum=VIDEO_CONFIG["max_resolution"],
                            value=VIDEO_CONFIG["default_height"],
                            step=64
                        )
                    
                    # Seed选项
                    with gr.Group(elem_classes=["controls-section"]):
                        seed_input = gr.Number(
                            label="Seed (-1 for random)",
                            value=-1,
                            precision=0
                        )
                    
                    # 高级参数
                    with gr.Group(elem_classes=["controls-section"]):
                        gr.HTML("<b>⚙️ Advanced</b>")
                        steps_input = gr.Slider(
                            label="Steps",
                            minimum=10,
                            maximum=30,
                            value=20,
                            step=1
                        )
                        
                        cfg_input = gr.Slider(
                            label="CFG Scale",
                            minimum=1.0,
                            maximum=15.0,
                            value=7.0,
                            step=0.1
                        )
                    
                    # 生成按钮
                    generate_button = gr.Button(
                        "🎬 GENERATE VIDEO",
                        elem_classes=["generate-btn"],
                        variant="primary"
                    )
            
            # 视频输出区域
            with gr.Row():
                video_output = gr.Video(
                    label="Generated Video (MP4)",
                    elem_classes=["video-output"],
                    show_label=True,
                    height=400
                )
            
            # 下载区域和信息显示
            with gr.Row():
                with gr.Column(scale=1):
                    mp4_download = gr.File(
                        label="📱 Download MP4",
                        visible=False
                    )
                with gr.Column(scale=1):
                    gif_download = gr.File(
                        label="🎞️ Download GIF",
                        visible=False
                    )
            
            # 视频信息显示
            with gr.Row():
                generation_info = gr.Textbox(
                    label="Generation Info",
                    interactive=False,
                    elem_classes=["video-info"],
                    show_label=True,
                    visible=False
                )
            
            # 元数据显示区域
            with gr.Row():
                metadata_display = gr.Textbox(
                    label="Video Metadata (Copy to save)",
                    interactive=True,
                    elem_classes=["metadata-box"],
                    show_label=True,
                    lines=15,
                    visible=False,
                    placeholder="Generated video metadata will appear here..."
                )
        
        # 生成视频的主要函数
        def on_generate(prompt, style, neg_prompt, steps, cfg, seed, width, height, duration, fps):
            mp4_path, gif_path, info, metadata = generate_video(
                prompt, style, neg_prompt, steps, cfg, seed, width, height, duration, fps
            )
            
            if mp4_path is not None:
                return (
                    mp4_path,  # 视频输出
                    mp4_path if mp4_path and os.path.exists(mp4_path) else None,  # MP4下载
                    gif_path if gif_path and os.path.exists(gif_path) else None,  # GIF下载
                    gr.update(visible=True, value=info),  # 显示生成信息
                    gr.update(visible=True, value=metadata),  # 显示元数据
                    gr.update(visible=True),  # 显示MP4下载
                    gr.update(visible=True)   # 显示GIF下载
                )
            else:
                return (
                    None, 
                    None,
                    None,
                    gr.update(visible=True, value=info if info else "Generation failed"),
                    gr.update(visible=False),
                    gr.update(visible=False),
                    gr.update(visible=False)
                )
        
        # 绑定生成事件
        generate_button.click(
            fn=on_generate,
            inputs=[
                prompt_input, style_input, negative_prompt_input, 
                steps_input, cfg_input, seed_input, width_input, height_input,
                duration_input, fps_input
            ],
            outputs=[
                video_output, mp4_download, gif_download,
                generation_info, metadata_display,
                mp4_download, gif_download
            ],
            show_progress=True
        )
        
        # 支持Enter键触发
        prompt_input.submit(
            fn=on_generate,
            inputs=[
                prompt_input, style_input, negative_prompt_input, 
                steps_input, cfg_input, seed_input, width_input, height_input,
                duration_input, fps_input
            ],
            outputs=[
                video_output, mp4_download, gif_download,
                generation_info, metadata_display,
                mp4_download, gif_download
            ],
            show_progress=True
        )
        
        # 启动时显示欢迎信息
        interface.load(
            fn=lambda: (
                None, None, None,
                gr.update(visible=False), 
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=False)
            ),
            outputs=[
                video_output, mp4_download, gif_download,
                generation_info, metadata_display,
                mp4_download, gif_download
            ]
        )
    
    return interface

# ===== 启动应用 =====
if __name__ == "__main__":
    print("🎬 Starting NSFW Video Generator...")
    print("Using complete repository structure for proper loading")
    print(f"🔧 Default Duration: {VIDEO_CONFIG['default_duration']}s")
    print(f"🔧 Default Resolution: {VIDEO_CONFIG['default_width']}×{VIDEO_CONFIG['default_height']}")
    print(f"🔧 Spaces GPU: {'✅ Available' if SPACES_AVAILABLE else '❌ Not Available'}")
    print(f"🔧 Compel Library: {'✅ Available' if COMPEL_AVAILABLE else '❌ Not Available'}")
    print(f"🔧 CUDA: {'✅ Available' if torch.cuda.is_available() else '❌ Not Available'}")
    
    app = create_interface()
    app.queue(max_size=5, default_concurrency_limit=1)  # 降低并发以节省GPU
    
    app.launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
        share=False
    )