Spaces:
Runtime error
Runtime error
| import comfy.model_patcher | |
| import comfy.samplers | |
| import re | |
| class SkipLayerGuidanceDiT: | |
| ''' | |
| Enhance guidance towards detailed dtructure by having another set of CFG negative with skipped layers. | |
| Inspired by Perturbed Attention Guidance (https://arxiv.org/abs/2403.17377) | |
| Original experimental implementation for SD3 by Dango233@StabilityAI. | |
| ''' | |
| def INPUT_TYPES(s): | |
| return {"required": {"model": ("MODEL", ), | |
| "double_layers": ("STRING", {"default": "7, 8, 9", "multiline": False}), | |
| "single_layers": ("STRING", {"default": "7, 8, 9", "multiline": False}), | |
| "scale": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 10.0, "step": 0.1}), | |
| "start_percent": ("FLOAT", {"default": 0.01, "min": 0.0, "max": 1.0, "step": 0.001}), | |
| "end_percent": ("FLOAT", {"default": 0.15, "min": 0.0, "max": 1.0, "step": 0.001}), | |
| "rescaling_scale": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.01}), | |
| }} | |
| RETURN_TYPES = ("MODEL",) | |
| FUNCTION = "skip_guidance" | |
| EXPERIMENTAL = True | |
| DESCRIPTION = "Generic version of SkipLayerGuidance node that can be used on every DiT model." | |
| CATEGORY = "advanced/guidance" | |
| def skip_guidance(self, model, scale, start_percent, end_percent, double_layers="", single_layers="", rescaling_scale=0): | |
| # check if layer is comma separated integers | |
| def skip(args, extra_args): | |
| return args | |
| model_sampling = model.get_model_object("model_sampling") | |
| sigma_start = model_sampling.percent_to_sigma(start_percent) | |
| sigma_end = model_sampling.percent_to_sigma(end_percent) | |
| double_layers = re.findall(r'\d+', double_layers) | |
| double_layers = [int(i) for i in double_layers] | |
| single_layers = re.findall(r'\d+', single_layers) | |
| single_layers = [int(i) for i in single_layers] | |
| if len(double_layers) == 0 and len(single_layers) == 0: | |
| return (model, ) | |
| def post_cfg_function(args): | |
| model = args["model"] | |
| cond_pred = args["cond_denoised"] | |
| cond = args["cond"] | |
| cfg_result = args["denoised"] | |
| sigma = args["sigma"] | |
| x = args["input"] | |
| model_options = args["model_options"].copy() | |
| for layer in double_layers: | |
| model_options = comfy.model_patcher.set_model_options_patch_replace(model_options, skip, "dit", "double_block", layer) | |
| for layer in single_layers: | |
| model_options = comfy.model_patcher.set_model_options_patch_replace(model_options, skip, "dit", "single_block", layer) | |
| model_sampling.percent_to_sigma(start_percent) | |
| sigma_ = sigma[0].item() | |
| if scale > 0 and sigma_ >= sigma_end and sigma_ <= sigma_start: | |
| (slg,) = comfy.samplers.calc_cond_batch(model, [cond], x, sigma, model_options) | |
| cfg_result = cfg_result + (cond_pred - slg) * scale | |
| if rescaling_scale != 0: | |
| factor = cond_pred.std() / cfg_result.std() | |
| factor = rescaling_scale * factor + (1 - rescaling_scale) | |
| cfg_result *= factor | |
| return cfg_result | |
| m = model.clone() | |
| m.set_model_sampler_post_cfg_function(post_cfg_function) | |
| return (m, ) | |
| NODE_CLASS_MAPPINGS = { | |
| "SkipLayerGuidanceDiT": SkipLayerGuidanceDiT, | |
| } | |