Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from PIL import Image | |
| from diffusers import QwenImageEditPlusPipeline | |
| MODEL_ID = "Qwen/Qwen-Image-Edit-2509" | |
| LORA_REPO = "lovis93/next-scene-qwen-image-lora-2509" | |
| LORA_FILE = "next-scene_lora_v1-3000.safetensors" | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32 | |
| pipe = QwenImageEditPlusPipeline.from_pretrained(MODEL_ID, torch_dtype=dtype).to(device) | |
| pipe.load_lora_weights(LORA_REPO, weight_name=LORA_FILE) | |
| def next_scene(image, prompt, steps, true_cfg_scale, lora_strength, seed): | |
| gen = None | |
| if seed and int(seed) != 0: | |
| gen = torch.Generator(device=device).manual_seed(int(seed)) | |
| try: | |
| pipe.set_adapters(["default"], adapter_weights=[float(lora_strength)]) | |
| except Exception: | |
| pass | |
| kwargs = dict( | |
| image=[image], | |
| prompt=prompt, | |
| num_inference_steps=int(steps), | |
| guidance_scale=1.0, | |
| generator=gen, | |
| ) | |
| try: | |
| kwargs["true_cfg_scale"] = float(true_cfg_scale) | |
| except Exception: | |
| pass | |
| out = pipe(**kwargs) | |
| return out.images[0] | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## Next Scene — Qwen-Image-Edit-2509 + LoRA") | |
| with gr.Row(): | |
| with gr.Column(): | |
| inp_img = gr.Image(type="pil", label="Входной кадр (старт сцены)") | |
| prompt = gr.Textbox( | |
| label='Промпт (начинайте с "Next Scene: ...")', | |
| value='Next Scene: camera pulls back revealing the riverside at sunset, soft rim light, subtle lens flare.' | |
| ) | |
| steps = gr.Slider(4, 60, value=40, step=1, label="Steps") | |
| true_cfg = gr.Slider(1.0, 6.0, value=3.0, step=0.5, label="true_cfg_scale") | |
| lora_strength = gr.Slider(0.0, 1.2, value=0.75, step=0.05, label="LoRA strength") | |
| seed = gr.Number(value=0, label="Seed (0 = random)") | |
| btn = gr.Button("Сгенерировать следующий кадр") | |
| with gr.Column(): | |
| out_img = gr.Image(label="Результат") | |
| btn.click(next_scene, [inp_img, prompt, steps, true_cfg, lora_strength, seed], [out_img]) | |
| if __name__ == "__main__": | |
| demo.launch() | |