alex1738's picture
Create app.py
c1d2b6f verified
import gradio as gr
import torch
from PIL import Image
from diffusers import QwenImageEditPlusPipeline
MODEL_ID = "Qwen/Qwen-Image-Edit-2509"
LORA_REPO = "lovis93/next-scene-qwen-image-lora-2509"
LORA_FILE = "next-scene_lora_v1-3000.safetensors"
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
pipe = QwenImageEditPlusPipeline.from_pretrained(MODEL_ID, torch_dtype=dtype).to(device)
pipe.load_lora_weights(LORA_REPO, weight_name=LORA_FILE)
def next_scene(image, prompt, steps, true_cfg_scale, lora_strength, seed):
gen = None
if seed and int(seed) != 0:
gen = torch.Generator(device=device).manual_seed(int(seed))
try:
pipe.set_adapters(["default"], adapter_weights=[float(lora_strength)])
except Exception:
pass
kwargs = dict(
image=[image],
prompt=prompt,
num_inference_steps=int(steps),
guidance_scale=1.0,
generator=gen,
)
try:
kwargs["true_cfg_scale"] = float(true_cfg_scale)
except Exception:
pass
out = pipe(**kwargs)
return out.images[0]
with gr.Blocks() as demo:
gr.Markdown("## Next Scene — Qwen-Image-Edit-2509 + LoRA")
with gr.Row():
with gr.Column():
inp_img = gr.Image(type="pil", label="Входной кадр (старт сцены)")
prompt = gr.Textbox(
label='Промпт (начинайте с "Next Scene: ...")',
value='Next Scene: camera pulls back revealing the riverside at sunset, soft rim light, subtle lens flare.'
)
steps = gr.Slider(4, 60, value=40, step=1, label="Steps")
true_cfg = gr.Slider(1.0, 6.0, value=3.0, step=0.5, label="true_cfg_scale")
lora_strength = gr.Slider(0.0, 1.2, value=0.75, step=0.05, label="LoRA strength")
seed = gr.Number(value=0, label="Seed (0 = random)")
btn = gr.Button("Сгенерировать следующий кадр")
with gr.Column():
out_img = gr.Image(label="Результат")
btn.click(next_scene, [inp_img, prompt, steps, true_cfg, lora_strength, seed], [out_img])
if __name__ == "__main__":
demo.launch()