Update app.py with complete YOLOv10 code from GitHub
Browse files
app.py
CHANGED
|
@@ -1,23 +1,167 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
from ultralytics import YOLO
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
if __name__ == "__main__":
|
| 23 |
gradio_app.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
from PIL import Image
|
| 4 |
from ultralytics import YOLO
|
| 5 |
+
|
| 6 |
+
# Load Models
|
| 7 |
+
models = {
|
| 8 |
+
"yolov10n": YOLO("jameslahm/yolov10n"),
|
| 9 |
+
"yolov10s": YOLO("jameslahm/yolov10s"),
|
| 10 |
+
"yolov10m": YOLO("jameslahm/yolov10m"),
|
| 11 |
+
"yolov10b": YOLO("jameslahm/yolov10b"),
|
| 12 |
+
"yolov10l": YOLO("jameslahm/yolov10l"),
|
| 13 |
+
"yolov10x": YOLO("jameslahm/yolov10x"),
|
| 14 |
+
}
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@spaces.GPU(duration=30)
|
| 18 |
+
def yolov10_inference(image, model_id, image_size, conf_threshold, iou_threshold):
|
| 19 |
+
model = models[model_id]
|
| 20 |
+
results = model.predict(
|
| 21 |
+
source=image,
|
| 22 |
+
imgsz=image_size,
|
| 23 |
+
conf=conf_threshold,
|
| 24 |
+
iou=iou_threshold,
|
| 25 |
+
)
|
| 26 |
+
annotated_image = results[0].plot()
|
| 27 |
+
return Image.fromarray(annotated_image[..., ::-1])
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def app():
|
| 31 |
+
with gr.Blocks():
|
| 32 |
+
with gr.Row():
|
| 33 |
+
with gr.Column():
|
| 34 |
+
image = gr.Image(type="pil", label="Image")
|
| 35 |
+
model_id = gr.Dropdown(
|
| 36 |
+
label="Model",
|
| 37 |
+
choices=[
|
| 38 |
+
"yolov10n",
|
| 39 |
+
"yolov10s",
|
| 40 |
+
"yolov10m",
|
| 41 |
+
"yolov10b",
|
| 42 |
+
"yolov10l",
|
| 43 |
+
"yolov10x",
|
| 44 |
+
],
|
| 45 |
+
value="yolov10m",
|
| 46 |
+
)
|
| 47 |
+
image_size = gr.Slider(
|
| 48 |
+
label="Image Size",
|
| 49 |
+
minimum=320,
|
| 50 |
+
maximum=1280,
|
| 51 |
+
step=32,
|
| 52 |
+
value=640,
|
| 53 |
+
)
|
| 54 |
+
conf_threshold = gr.Slider(
|
| 55 |
+
label="Confidence Threshold",
|
| 56 |
+
minimum=0.0,
|
| 57 |
+
maximum=1.0,
|
| 58 |
+
step=0.05,
|
| 59 |
+
value=0.25,
|
| 60 |
+
)
|
| 61 |
+
iou_threshold = gr.Slider(
|
| 62 |
+
label="IoU Threshold",
|
| 63 |
+
minimum=0.0,
|
| 64 |
+
maximum=1.0,
|
| 65 |
+
step=0.05,
|
| 66 |
+
value=0.45,
|
| 67 |
+
)
|
| 68 |
+
yolov10_infer = gr.Button(value="Detect Objects")
|
| 69 |
+
|
| 70 |
+
with gr.Column():
|
| 71 |
+
output_image = gr.Image(type="pil", label="Annotated Image")
|
| 72 |
+
|
| 73 |
+
gr.Examples(
|
| 74 |
+
examples=[
|
| 75 |
+
["dog.jpeg", "yolov10m", 640, 0.25, 0.45],
|
| 76 |
+
["huggingface.jpg", "yolov10m", 640, 0.25, 0.45],
|
| 77 |
+
["zidane.jpg", "yolov10m", 640, 0.25, 0.45],
|
| 78 |
+
],
|
| 79 |
+
fn=yolov10_inference,
|
| 80 |
+
inputs=[image, model_id, image_size, conf_threshold, iou_threshold],
|
| 81 |
+
outputs=[output_image],
|
| 82 |
+
cache_examples='lazy',
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
yolov10_infer.click(
|
| 86 |
+
fn=yolov10_inference,
|
| 87 |
+
inputs=[image, model_id, image_size, conf_threshold, iou_threshold],
|
| 88 |
+
outputs=[output_image],
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
gradio_app = gr.Blocks()
|
| 93 |
+
with gradio_app:
|
| 94 |
+
gr.HTML(
|
| 95 |
+
"""
|
| 96 |
+
<h1 style='text-align: center'>
|
| 97 |
+
YOLOv10: Real-Time End-to-End Object Detection
|
| 98 |
+
</h1>
|
| 99 |
+
""")
|
| 100 |
+
gr.HTML(
|
| 101 |
+
"""
|
| 102 |
+
<h3 style='text-align: center'>
|
| 103 |
+
Follow me for more!
|
| 104 |
+
<a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a> | <a href='https://www.huggingface.co/kadirnar/' target='_blank'>HuggingFace</a>
|
| 105 |
+
</h3>
|
| 106 |
+
""")
|
| 107 |
+
with gr.Row():
|
| 108 |
+
with gr.Column():
|
| 109 |
+
image = gr.Image(type="pil", label="Image")
|
| 110 |
+
model_id = gr.Dropdown(
|
| 111 |
+
label="Model",
|
| 112 |
+
choices=[
|
| 113 |
+
"yolov10n",
|
| 114 |
+
"yolov10s",
|
| 115 |
+
"yolov10m",
|
| 116 |
+
"yolov10b",
|
| 117 |
+
"yolov10l",
|
| 118 |
+
"yolov10x",
|
| 119 |
+
],
|
| 120 |
+
value="yolov10m",
|
| 121 |
+
)
|
| 122 |
+
image_size = gr.Slider(
|
| 123 |
+
label="Image Size",
|
| 124 |
+
minimum=320,
|
| 125 |
+
maximum=1280,
|
| 126 |
+
step=32,
|
| 127 |
+
value=640,
|
| 128 |
+
)
|
| 129 |
+
conf_threshold = gr.Slider(
|
| 130 |
+
label="Confidence Threshold",
|
| 131 |
+
minimum=0.0,
|
| 132 |
+
maximum=1.0,
|
| 133 |
+
step=0.05,
|
| 134 |
+
value=0.25,
|
| 135 |
+
)
|
| 136 |
+
iou_threshold = gr.Slider(
|
| 137 |
+
label="IoU Threshold",
|
| 138 |
+
minimum=0.0,
|
| 139 |
+
maximum=1.0,
|
| 140 |
+
step=0.05,
|
| 141 |
+
value=0.45,
|
| 142 |
+
)
|
| 143 |
+
yolov10_infer = gr.Button(value="Detect Objects")
|
| 144 |
+
|
| 145 |
+
with gr.Column():
|
| 146 |
+
output_image = gr.Image(type="pil", label="Annotated Image")
|
| 147 |
+
|
| 148 |
+
gr.Examples(
|
| 149 |
+
examples=[
|
| 150 |
+
["dog.jpeg", "yolov10m", 640, 0.25, 0.45],
|
| 151 |
+
["huggingface.jpg", "yolov10m", 640, 0.25, 0.45],
|
| 152 |
+
["zidane.jpg", "yolov10m", 640, 0.25, 0.45],
|
| 153 |
+
],
|
| 154 |
+
fn=yolov10_inference,
|
| 155 |
+
inputs=[image, model_id, image_size, conf_threshold, iou_threshold],
|
| 156 |
+
outputs=[output_image],
|
| 157 |
+
cache_examples='lazy',
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
yolov10_infer.click(
|
| 161 |
+
fn=yolov10_inference,
|
| 162 |
+
inputs=[image, model_id, image_size, conf_threshold, iou_threshold],
|
| 163 |
+
outputs=[output_image],
|
| 164 |
+
)
|
| 165 |
|
| 166 |
if __name__ == "__main__":
|
| 167 |
gradio_app.launch()
|