Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
| from qwen_vl_utils import process_vision_info | |
| # Load the model and processor on available device(s) | |
| model = Qwen2VLForConditionalGeneration.from_pretrained( | |
| "Qwen/Qwen2-VL-72B-Instruct-AWQ", | |
| torch_dtype=torch.float16, | |
| #device_map="auto" | |
| ) | |
| processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-72B-Instruct-AWQ") | |
| def generate_caption(image, prompt): | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": "image", | |
| "image": image, # The uploaded image | |
| }, | |
| {"type": "text", "text": prompt}, | |
| ], | |
| } | |
| ] | |
| # Prepare the input | |
| text = processor.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt" | |
| ) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| inputs = inputs.to(device) | |
| # Generate the output | |
| generated_ids = model.generate(**inputs, max_new_tokens=128) | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| ) | |
| return output_text[0] | |
| # Launch the Gradio interface with the updated inference function and title | |
| demo = gr.ChatInterface(fn=generate_caption, title="Qwen2-VL-72B-Instruct-OCR", multimodal=True, description="Upload your Image and get the best possible insights out of the Image") | |
| demo.queue().launch() | |