akhaliq's picture
akhaliq HF Staff
Update app.py
5692c1c verified
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
import math
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
import os
# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509",
transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO",
subfolder='transformer',
torch_dtype=dtype,
device_map='cuda'),torch_dtype=dtype).to(device)
pipe.load_lora_weights("eigen-ai-labs/eigen-banana-qwen-image-edit",
weight_name="eigen-banana-qwen-image-edit-fp16-lora.safetensors",
adapter_name="eigen-banana")
pipe.set_adapters(["eigen-banana"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["eigen-banana"], lora_scale=1.0)
pipe.unload_lora_weights()
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")
MAX_SEED = np.iinfo(np.int32).max
@spaces.GPU
def convert_to_anime(
image,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
height,
width,
progress=gr.Progress(track_tqdm=True)
):
if not prompt or prompt.strip() == "":
prompt = "edit"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
pil_images = []
if image is not None:
if isinstance(image, Image.Image):
pil_images.append(image.convert("RGB"))
elif hasattr(image, "name"):
pil_images.append(Image.open(image.name).convert("RGB"))
if len(pil_images) == 0:
raise gr.Error("Please upload an image first.")
result = pipe(
image=pil_images,
prompt=prompt,
height=height if height != 0 else None,
width=width if width != 0 else None,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=1,
).images[0]
return result, seed
# --- UI ---
css = '''
#col-container {
max-width: 900px;
margin: 0 auto;
padding: 2rem;
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif;
}
.gradio-container.light {
background: linear-gradient(to bottom, #f5f5f7, #ffffff);
}
.gradio-container.dark {
background: linear-gradient(to bottom, #1a1a1a, #0d0d0d);
}
#title {
text-align: center;
font-size: 2.5rem;
font-weight: 600;
margin-bottom: 0.5rem;
}
.light #title {
color: #1d1d1f;
}
.dark #title {
color: #f5f5f7;
}
#description {
text-align: center;
font-size: 1.1rem;
margin-bottom: 2rem;
}
.light #description {
color: #6e6e73;
}
.dark #description {
color: #a1a1a6;
}
.light #description a {
color: #0071e3;
}
.dark #description a {
color: #2997ff;
}
.image-container {
border-radius: 18px;
overflow: hidden;
}
.light .image-container {
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.07);
}
.dark .image-container {
box-shadow: 0 4px 6px rgba(255, 255, 255, 0.1);
}
#convert-btn {
background: linear-gradient(180deg, #0071e3 0%, #0077ed 100%);
border: none;
border-radius: 12px;
color: white;
font-size: 1.1rem;
font-weight: 500;
padding: 0.75rem 2rem;
transition: all 0.3s ease;
}
#convert-btn:hover {
transform: translateY(-2px);
box-shadow: 0 8px 16px rgba(0, 113, 227, 0.3);
}
'''
def update_dimensions_on_upload(image):
if image is None:
return 1024, 1024
original_width, original_height = image.size
if original_width > original_height:
new_width = 1024
aspect_ratio = original_height / original_width
new_height = int(new_width * aspect_ratio)
else:
new_height = 1024
aspect_ratio = original_width / original_height
new_width = int(new_height * aspect_ratio)
# Ensure dimensions are multiples of 8
new_width = (new_width // 8) * 8
new_height = (new_height // 8) * 8
return new_width, new_height
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# 🍌 Eigen-Banana-Qwen-Image-Edit: Fast Image Editing with Qwen-Image-Edit LoRA", elem_id="title")
gr.Markdown(
"""
Fast image editing powered by Qwen-Image-Edit with Eigen-Banana LoRA ✨
<br>
<div style='text-align: center; margin-top: 1rem;'>
<a href='https://huggingface.co/spaces/akhaliq/anycoder' target='_blank' style='color: #0071e3; text-decoration: none; font-weight: 500;'>Built with anycoder</a>
</div>
""",
elem_id="description"
)
with gr.Row():
with gr.Column(scale=1):
image = gr.Image(
label="Upload Photo",
type="pil",
elem_classes="image-container"
)
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your editing instruction (e.g., 'Convert this photo to anime style')",
lines=2,
value="Edit"
)
with gr.Accordion("⚙️ Advanced Settings", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
true_guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=4)
height = gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024, visible=False)
width = gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024, visible=False)
convert_btn = gr.Button("Edit", variant="primary", elem_id="convert-btn", size="lg")
with gr.Column(scale=1):
result = gr.Image(
label="Result",
interactive=False,
elem_classes="image-container"
)
inputs = [
image, prompt, seed, randomize_seed, true_guidance_scale,
num_inference_steps, height, width
]
outputs = [result, seed]
# Convert button click
convert_btn.click(
fn=convert_to_anime,
inputs=inputs,
outputs=outputs
)
# Image upload triggers dimension update
image.upload(
fn=update_dimensions_on_upload,
inputs=[image],
outputs=[width, height]
)
demo.launch()