Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,849 Bytes
412af08 db18219 412af08 6464e19 412af08 db18219 412af08 db18219 5692c1c 412af08 6464e19 412af08 c3dc2f1 412af08 c3dc2f1 412af08 c3dc2f1 412af08 c3dc2f1 412af08 c3dc2f1 412af08 c3dc2f1 412af08 8ad5464 db18219 8ad5464 db18219 8ad5464 6464e19 db18219 5692c1c db18219 6464e19 5692c1c 6464e19 5692c1c 6464e19 8ad5464 db18219 8ad5464 412af08 6464e19 8ad5464 412af08 8ad5464 412af08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
import math
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
import os
# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509",
transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO",
subfolder='transformer',
torch_dtype=dtype,
device_map='cuda'),torch_dtype=dtype).to(device)
pipe.load_lora_weights("eigen-ai-labs/eigen-banana-qwen-image-edit",
weight_name="eigen-banana-qwen-image-edit-fp16-lora.safetensors",
adapter_name="eigen-banana")
pipe.set_adapters(["eigen-banana"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["eigen-banana"], lora_scale=1.0)
pipe.unload_lora_weights()
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")
MAX_SEED = np.iinfo(np.int32).max
@spaces.GPU
def convert_to_anime(
image,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
height,
width,
progress=gr.Progress(track_tqdm=True)
):
if not prompt or prompt.strip() == "":
prompt = "edit"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
pil_images = []
if image is not None:
if isinstance(image, Image.Image):
pil_images.append(image.convert("RGB"))
elif hasattr(image, "name"):
pil_images.append(Image.open(image.name).convert("RGB"))
if len(pil_images) == 0:
raise gr.Error("Please upload an image first.")
result = pipe(
image=pil_images,
prompt=prompt,
height=height if height != 0 else None,
width=width if width != 0 else None,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=1,
).images[0]
return result, seed
# --- UI ---
css = '''
#col-container {
max-width: 900px;
margin: 0 auto;
padding: 2rem;
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif;
}
.gradio-container.light {
background: linear-gradient(to bottom, #f5f5f7, #ffffff);
}
.gradio-container.dark {
background: linear-gradient(to bottom, #1a1a1a, #0d0d0d);
}
#title {
text-align: center;
font-size: 2.5rem;
font-weight: 600;
margin-bottom: 0.5rem;
}
.light #title {
color: #1d1d1f;
}
.dark #title {
color: #f5f5f7;
}
#description {
text-align: center;
font-size: 1.1rem;
margin-bottom: 2rem;
}
.light #description {
color: #6e6e73;
}
.dark #description {
color: #a1a1a6;
}
.light #description a {
color: #0071e3;
}
.dark #description a {
color: #2997ff;
}
.image-container {
border-radius: 18px;
overflow: hidden;
}
.light .image-container {
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.07);
}
.dark .image-container {
box-shadow: 0 4px 6px rgba(255, 255, 255, 0.1);
}
#convert-btn {
background: linear-gradient(180deg, #0071e3 0%, #0077ed 100%);
border: none;
border-radius: 12px;
color: white;
font-size: 1.1rem;
font-weight: 500;
padding: 0.75rem 2rem;
transition: all 0.3s ease;
}
#convert-btn:hover {
transform: translateY(-2px);
box-shadow: 0 8px 16px rgba(0, 113, 227, 0.3);
}
'''
def update_dimensions_on_upload(image):
if image is None:
return 1024, 1024
original_width, original_height = image.size
if original_width > original_height:
new_width = 1024
aspect_ratio = original_height / original_width
new_height = int(new_width * aspect_ratio)
else:
new_height = 1024
aspect_ratio = original_width / original_height
new_width = int(new_height * aspect_ratio)
# Ensure dimensions are multiples of 8
new_width = (new_width // 8) * 8
new_height = (new_height // 8) * 8
return new_width, new_height
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# 🍌 Eigen-Banana-Qwen-Image-Edit: Fast Image Editing with Qwen-Image-Edit LoRA", elem_id="title")
gr.Markdown(
"""
Fast image editing powered by Qwen-Image-Edit with Eigen-Banana LoRA ✨
<br>
<div style='text-align: center; margin-top: 1rem;'>
<a href='https://huggingface.co/spaces/akhaliq/anycoder' target='_blank' style='color: #0071e3; text-decoration: none; font-weight: 500;'>Built with anycoder</a>
</div>
""",
elem_id="description"
)
with gr.Row():
with gr.Column(scale=1):
image = gr.Image(
label="Upload Photo",
type="pil",
elem_classes="image-container"
)
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your editing instruction (e.g., 'Convert this photo to anime style')",
lines=2,
value="Edit"
)
with gr.Accordion("⚙️ Advanced Settings", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
true_guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=4)
height = gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024, visible=False)
width = gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024, visible=False)
convert_btn = gr.Button("Edit", variant="primary", elem_id="convert-btn", size="lg")
with gr.Column(scale=1):
result = gr.Image(
label="Result",
interactive=False,
elem_classes="image-container"
)
inputs = [
image, prompt, seed, randomize_seed, true_guidance_scale,
num_inference_steps, height, width
]
outputs = [result, seed]
# Convert button click
convert_btn.click(
fn=convert_to_anime,
inputs=inputs,
outputs=outputs
)
# Image upload triggers dimension update
image.upload(
fn=update_dimensions_on_upload,
inputs=[image],
outputs=[width, height]
)
demo.launch() |