Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python3 | |
| # -*- coding: utf-8 -*- | |
| # Copyright 2019 Tomoki Hayashi | |
| # MIT License (https://opensource.org/licenses/MIT) | |
| """Train Parallel WaveGAN.""" | |
| import argparse | |
| import logging | |
| import os | |
| import sys | |
| from collections import defaultdict | |
| import matplotlib | |
| import numpy as np | |
| import soundfile as sf | |
| import torch | |
| import yaml | |
| from tensorboardX import SummaryWriter | |
| from torch.utils.data import DataLoader | |
| from tqdm import tqdm | |
| import parallel_wavegan | |
| import parallel_wavegan.models | |
| import parallel_wavegan.optimizers | |
| from parallel_wavegan.datasets import AudioMelDataset | |
| from parallel_wavegan.datasets import AudioMelSCPDataset | |
| from parallel_wavegan.layers import PQMF | |
| from parallel_wavegan.losses import DiscriminatorAdversarialLoss | |
| from parallel_wavegan.losses import FeatureMatchLoss | |
| from parallel_wavegan.losses import GeneratorAdversarialLoss | |
| from parallel_wavegan.losses import MelSpectrogramLoss | |
| from parallel_wavegan.losses import MultiResolutionSTFTLoss | |
| from parallel_wavegan.utils import read_hdf5 | |
| # set to avoid matplotlib error in CLI environment | |
| matplotlib.use("Agg") | |
| class Trainer(object): | |
| """Customized trainer module for Parallel WaveGAN training.""" | |
| def __init__( | |
| self, | |
| steps, | |
| epochs, | |
| data_loader, | |
| sampler, | |
| model, | |
| criterion, | |
| optimizer, | |
| scheduler, | |
| config, | |
| device=torch.device("cpu"), | |
| ): | |
| """Initialize trainer. | |
| Args: | |
| steps (int): Initial global steps. | |
| epochs (int): Initial global epochs. | |
| data_loader (dict): Dict of data loaders. It must contrain "train" and "dev" loaders. | |
| model (dict): Dict of models. It must contrain "generator" and "discriminator" models. | |
| criterion (dict): Dict of criterions. It must contrain "stft" and "mse" criterions. | |
| optimizer (dict): Dict of optimizers. It must contrain "generator" and "discriminator" optimizers. | |
| scheduler (dict): Dict of schedulers. It must contrain "generator" and "discriminator" schedulers. | |
| config (dict): Config dict loaded from yaml format configuration file. | |
| device (torch.deive): Pytorch device instance. | |
| """ | |
| self.steps = steps | |
| self.epochs = epochs | |
| self.data_loader = data_loader | |
| self.sampler = sampler | |
| self.model = model | |
| self.criterion = criterion | |
| self.optimizer = optimizer | |
| self.scheduler = scheduler | |
| self.config = config | |
| self.device = device | |
| self.writer = SummaryWriter(config["outdir"]) | |
| self.finish_train = False | |
| self.total_train_loss = defaultdict(float) | |
| self.total_eval_loss = defaultdict(float) | |
| def run(self): | |
| """Run training.""" | |
| self.tqdm = tqdm( | |
| initial=self.steps, total=self.config["train_max_steps"], desc="[train]" | |
| ) | |
| while True: | |
| # train one epoch | |
| self._train_epoch() | |
| # check whether training is finished | |
| if self.finish_train: | |
| break | |
| self.tqdm.close() | |
| logging.info("Finished training.") | |
| def save_checkpoint(self, checkpoint_path): | |
| """Save checkpoint. | |
| Args: | |
| checkpoint_path (str): Checkpoint path to be saved. | |
| """ | |
| state_dict = { | |
| "optimizer": { | |
| "generator": self.optimizer["generator"].state_dict(), | |
| "discriminator": self.optimizer["discriminator"].state_dict(), | |
| }, | |
| "scheduler": { | |
| "generator": self.scheduler["generator"].state_dict(), | |
| "discriminator": self.scheduler["discriminator"].state_dict(), | |
| }, | |
| "steps": self.steps, | |
| "epochs": self.epochs, | |
| } | |
| if self.config["distributed"]: | |
| state_dict["model"] = { | |
| "generator": self.model["generator"].module.state_dict(), | |
| "discriminator": self.model["discriminator"].module.state_dict(), | |
| } | |
| else: | |
| state_dict["model"] = { | |
| "generator": self.model["generator"].state_dict(), | |
| "discriminator": self.model["discriminator"].state_dict(), | |
| } | |
| if not os.path.exists(os.path.dirname(checkpoint_path)): | |
| os.makedirs(os.path.dirname(checkpoint_path)) | |
| torch.save(state_dict, checkpoint_path) | |
| def load_checkpoint(self, checkpoint_path, load_only_params=False): | |
| """Load checkpoint. | |
| Args: | |
| checkpoint_path (str): Checkpoint path to be loaded. | |
| load_only_params (bool): Whether to load only model parameters. | |
| """ | |
| state_dict = torch.load(checkpoint_path, map_location="cpu") | |
| if self.config["distributed"]: | |
| self.model["generator"].module.load_state_dict( | |
| state_dict["model"]["generator"] | |
| ) | |
| self.model["discriminator"].module.load_state_dict( | |
| state_dict["model"]["discriminator"] | |
| ) | |
| else: | |
| self.model["generator"].load_state_dict(state_dict["model"]["generator"]) | |
| self.model["discriminator"].load_state_dict( | |
| state_dict["model"]["discriminator"] | |
| ) | |
| if not load_only_params: | |
| self.steps = state_dict["steps"] | |
| self.epochs = state_dict["epochs"] | |
| self.optimizer["generator"].load_state_dict( | |
| state_dict["optimizer"]["generator"] | |
| ) | |
| self.optimizer["discriminator"].load_state_dict( | |
| state_dict["optimizer"]["discriminator"] | |
| ) | |
| self.scheduler["generator"].load_state_dict( | |
| state_dict["scheduler"]["generator"] | |
| ) | |
| self.scheduler["discriminator"].load_state_dict( | |
| state_dict["scheduler"]["discriminator"] | |
| ) | |
| def _train_step(self, batch): | |
| """Train model one step.""" | |
| # parse batch | |
| x, y = batch | |
| x = tuple([x_.to(self.device) for x_ in x]) | |
| y = y.to(self.device) | |
| ####################### | |
| # Generator # | |
| ####################### | |
| if self.steps > self.config.get("generator_train_start_steps", 0): | |
| y_ = self.model["generator"](*x) | |
| # reconstruct the signal from multi-band signal | |
| if self.config["generator_params"]["out_channels"] > 1: | |
| y_mb_ = y_ | |
| y_ = self.criterion["pqmf"].synthesis(y_mb_) | |
| # initialize | |
| gen_loss = 0.0 | |
| # multi-resolution sfft loss | |
| if self.config["use_stft_loss"]: | |
| sc_loss, mag_loss = self.criterion["stft"](y_, y) | |
| gen_loss += sc_loss + mag_loss | |
| self.total_train_loss[ | |
| "train/spectral_convergence_loss" | |
| ] += sc_loss.item() | |
| self.total_train_loss[ | |
| "train/log_stft_magnitude_loss" | |
| ] += mag_loss.item() | |
| # subband multi-resolution stft loss | |
| if self.config["use_subband_stft_loss"]: | |
| gen_loss *= 0.5 # for balancing with subband stft loss | |
| y_mb = self.criterion["pqmf"].analysis(y) | |
| sub_sc_loss, sub_mag_loss = self.criterion["sub_stft"](y_mb_, y_mb) | |
| gen_loss += 0.5 * (sub_sc_loss + sub_mag_loss) | |
| self.total_train_loss[ | |
| "train/sub_spectral_convergence_loss" | |
| ] += sub_sc_loss.item() | |
| self.total_train_loss[ | |
| "train/sub_log_stft_magnitude_loss" | |
| ] += sub_mag_loss.item() | |
| # mel spectrogram loss | |
| if self.config["use_mel_loss"]: | |
| mel_loss = self.criterion["mel"](y_, y) | |
| gen_loss += mel_loss | |
| self.total_train_loss["train/mel_loss"] += mel_loss.item() | |
| # weighting aux loss | |
| gen_loss *= self.config.get("lambda_aux", 1.0) | |
| # adversarial loss | |
| if self.steps > self.config["discriminator_train_start_steps"]: | |
| p_ = self.model["discriminator"](y_) | |
| adv_loss = self.criterion["gen_adv"](p_) | |
| self.total_train_loss["train/adversarial_loss"] += adv_loss.item() | |
| # feature matching loss | |
| if self.config["use_feat_match_loss"]: | |
| # no need to track gradients | |
| with torch.no_grad(): | |
| p = self.model["discriminator"](y) | |
| fm_loss = self.criterion["feat_match"](p_, p) | |
| self.total_train_loss[ | |
| "train/feature_matching_loss" | |
| ] += fm_loss.item() | |
| adv_loss += self.config["lambda_feat_match"] * fm_loss | |
| # add adversarial loss to generator loss | |
| gen_loss += self.config["lambda_adv"] * adv_loss | |
| self.total_train_loss["train/generator_loss"] += gen_loss.item() | |
| # update generator | |
| self.optimizer["generator"].zero_grad() | |
| gen_loss.backward() | |
| if self.config["generator_grad_norm"] > 0: | |
| torch.nn.utils.clip_grad_norm_( | |
| self.model["generator"].parameters(), | |
| self.config["generator_grad_norm"], | |
| ) | |
| self.optimizer["generator"].step() | |
| self.scheduler["generator"].step() | |
| ####################### | |
| # Discriminator # | |
| ####################### | |
| if self.steps > self.config["discriminator_train_start_steps"]: | |
| # re-compute y_ which leads better quality | |
| with torch.no_grad(): | |
| y_ = self.model["generator"](*x) | |
| if self.config["generator_params"]["out_channels"] > 1: | |
| y_ = self.criterion["pqmf"].synthesis(y_) | |
| # discriminator loss | |
| p = self.model["discriminator"](y) | |
| p_ = self.model["discriminator"](y_.detach()) | |
| real_loss, fake_loss = self.criterion["dis_adv"](p_, p) | |
| dis_loss = real_loss + fake_loss | |
| self.total_train_loss["train/real_loss"] += real_loss.item() | |
| self.total_train_loss["train/fake_loss"] += fake_loss.item() | |
| self.total_train_loss["train/discriminator_loss"] += dis_loss.item() | |
| # update discriminator | |
| self.optimizer["discriminator"].zero_grad() | |
| dis_loss.backward() | |
| if self.config["discriminator_grad_norm"] > 0: | |
| torch.nn.utils.clip_grad_norm_( | |
| self.model["discriminator"].parameters(), | |
| self.config["discriminator_grad_norm"], | |
| ) | |
| self.optimizer["discriminator"].step() | |
| self.scheduler["discriminator"].step() | |
| # update counts | |
| self.steps += 1 | |
| self.tqdm.update(1) | |
| self._check_train_finish() | |
| def _train_epoch(self): | |
| """Train model one epoch.""" | |
| for train_steps_per_epoch, batch in enumerate(self.data_loader["train"], 1): | |
| # train one step | |
| self._train_step(batch) | |
| # check interval | |
| if self.config["rank"] == 0: | |
| self._check_log_interval() | |
| self._check_eval_interval() | |
| self._check_save_interval() | |
| # check whether training is finished | |
| if self.finish_train: | |
| return | |
| # update | |
| self.epochs += 1 | |
| self.train_steps_per_epoch = train_steps_per_epoch | |
| logging.info( | |
| f"(Steps: {self.steps}) Finished {self.epochs} epoch training " | |
| f"({self.train_steps_per_epoch} steps per epoch)." | |
| ) | |
| # needed for shuffle in distributed training | |
| if self.config["distributed"]: | |
| self.sampler["train"].set_epoch(self.epochs) | |
| def _eval_step(self, batch): | |
| """Evaluate model one step.""" | |
| # parse batch | |
| x, y = batch | |
| x = tuple([x_.to(self.device) for x_ in x]) | |
| y = y.to(self.device) | |
| ####################### | |
| # Generator # | |
| ####################### | |
| y_ = self.model["generator"](*x) | |
| if self.config["generator_params"]["out_channels"] > 1: | |
| y_mb_ = y_ | |
| y_ = self.criterion["pqmf"].synthesis(y_mb_) | |
| # initialize | |
| aux_loss = 0.0 | |
| # multi-resolution stft loss | |
| if self.config["use_stft_loss"]: | |
| sc_loss, mag_loss = self.criterion["stft"](y_, y) | |
| aux_loss += sc_loss + mag_loss | |
| self.total_eval_loss["eval/spectral_convergence_loss"] += sc_loss.item() | |
| self.total_eval_loss["eval/log_stft_magnitude_loss"] += mag_loss.item() | |
| # subband multi-resolution stft loss | |
| if self.config.get("use_subband_stft_loss", False): | |
| aux_loss *= 0.5 # for balancing with subband stft loss | |
| y_mb = self.criterion["pqmf"].analysis(y) | |
| sub_sc_loss, sub_mag_loss = self.criterion["sub_stft"](y_mb_, y_mb) | |
| self.total_eval_loss[ | |
| "eval/sub_spectral_convergence_loss" | |
| ] += sub_sc_loss.item() | |
| self.total_eval_loss[ | |
| "eval/sub_log_stft_magnitude_loss" | |
| ] += sub_mag_loss.item() | |
| aux_loss += 0.5 * (sub_sc_loss + sub_mag_loss) | |
| # mel spectrogram loss | |
| if self.config["use_mel_loss"]: | |
| mel_loss = self.criterion["mel"](y_, y) | |
| aux_loss += mel_loss | |
| self.total_eval_loss["eval/mel_loss"] += mel_loss.item() | |
| # weighting stft loss | |
| aux_loss *= self.config.get("lambda_aux", 1.0) | |
| # adversarial loss | |
| p_ = self.model["discriminator"](y_) | |
| adv_loss = self.criterion["gen_adv"](p_) | |
| gen_loss = aux_loss + self.config["lambda_adv"] * adv_loss | |
| # feature matching loss | |
| if self.config["use_feat_match_loss"]: | |
| p = self.model["discriminator"](y) | |
| fm_loss = self.criterion["feat_match"](p_, p) | |
| self.total_eval_loss["eval/feature_matching_loss"] += fm_loss.item() | |
| gen_loss += ( | |
| self.config["lambda_adv"] * self.config["lambda_feat_match"] * fm_loss | |
| ) | |
| ####################### | |
| # Discriminator # | |
| ####################### | |
| p = self.model["discriminator"](y) | |
| p_ = self.model["discriminator"](y_) | |
| # discriminator loss | |
| real_loss, fake_loss = self.criterion["dis_adv"](p_, p) | |
| dis_loss = real_loss + fake_loss | |
| # add to total eval loss | |
| self.total_eval_loss["eval/adversarial_loss"] += adv_loss.item() | |
| self.total_eval_loss["eval/generator_loss"] += gen_loss.item() | |
| self.total_eval_loss["eval/real_loss"] += real_loss.item() | |
| self.total_eval_loss["eval/fake_loss"] += fake_loss.item() | |
| self.total_eval_loss["eval/discriminator_loss"] += dis_loss.item() | |
| def _eval_epoch(self): | |
| """Evaluate model one epoch.""" | |
| logging.info(f"(Steps: {self.steps}) Start evaluation.") | |
| # change mode | |
| for key in self.model.keys(): | |
| self.model[key].eval() | |
| # calculate loss for each batch | |
| for eval_steps_per_epoch, batch in enumerate( | |
| tqdm(self.data_loader["dev"], desc="[eval]"), 1 | |
| ): | |
| # eval one step | |
| self._eval_step(batch) | |
| # save intermediate result | |
| if eval_steps_per_epoch == 1: | |
| self._genearete_and_save_intermediate_result(batch) | |
| logging.info( | |
| f"(Steps: {self.steps}) Finished evaluation " | |
| f"({eval_steps_per_epoch} steps per epoch)." | |
| ) | |
| # average loss | |
| for key in self.total_eval_loss.keys(): | |
| self.total_eval_loss[key] /= eval_steps_per_epoch | |
| logging.info( | |
| f"(Steps: {self.steps}) {key} = {self.total_eval_loss[key]:.4f}." | |
| ) | |
| # record | |
| self._write_to_tensorboard(self.total_eval_loss) | |
| # reset | |
| self.total_eval_loss = defaultdict(float) | |
| # restore mode | |
| for key in self.model.keys(): | |
| self.model[key].train() | |
| def _genearete_and_save_intermediate_result(self, batch): | |
| """Generate and save intermediate result.""" | |
| # delayed import to avoid error related backend error | |
| import matplotlib.pyplot as plt | |
| # generate | |
| x_batch, y_batch = batch | |
| x_batch = tuple([x.to(self.device) for x in x_batch]) | |
| y_batch = y_batch.to(self.device) | |
| y_batch_ = self.model["generator"](*x_batch) | |
| if self.config["generator_params"]["out_channels"] > 1: | |
| y_batch_ = self.criterion["pqmf"].synthesis(y_batch_) | |
| # check directory | |
| dirname = os.path.join(self.config["outdir"], f"predictions/{self.steps}steps") | |
| if not os.path.exists(dirname): | |
| os.makedirs(dirname) | |
| for idx, (y, y_) in enumerate(zip(y_batch, y_batch_), 1): | |
| # convert to ndarray | |
| y, y_ = y.view(-1).cpu().numpy(), y_.view(-1).cpu().numpy() | |
| # plot figure and save it | |
| figname = os.path.join(dirname, f"{idx}.png") | |
| plt.subplot(2, 1, 1) | |
| plt.plot(y) | |
| plt.title("groundtruth speech") | |
| plt.subplot(2, 1, 2) | |
| plt.plot(y_) | |
| plt.title(f"generated speech @ {self.steps} steps") | |
| plt.tight_layout() | |
| plt.savefig(figname) | |
| plt.close() | |
| # save as wavfile | |
| y = np.clip(y, -1, 1) | |
| y_ = np.clip(y_, -1, 1) | |
| sf.write( | |
| figname.replace(".png", "_ref.wav"), | |
| y, | |
| self.config["sampling_rate"], | |
| "PCM_16", | |
| ) | |
| sf.write( | |
| figname.replace(".png", "_gen.wav"), | |
| y_, | |
| self.config["sampling_rate"], | |
| "PCM_16", | |
| ) | |
| if idx >= self.config["num_save_intermediate_results"]: | |
| break | |
| def _write_to_tensorboard(self, loss): | |
| """Write to tensorboard.""" | |
| for key, value in loss.items(): | |
| self.writer.add_scalar(key, value, self.steps) | |
| def _check_save_interval(self): | |
| if self.steps % self.config["save_interval_steps"] == 0: | |
| self.save_checkpoint( | |
| os.path.join(self.config["outdir"], f"checkpoint-{self.steps}steps.pkl") | |
| ) | |
| logging.info(f"Successfully saved checkpoint @ {self.steps} steps.") | |
| def _check_eval_interval(self): | |
| if self.steps % self.config["eval_interval_steps"] == 0: | |
| self._eval_epoch() | |
| def _check_log_interval(self): | |
| if self.steps % self.config["log_interval_steps"] == 0: | |
| for key in self.total_train_loss.keys(): | |
| self.total_train_loss[key] /= self.config["log_interval_steps"] | |
| logging.info( | |
| f"(Steps: {self.steps}) {key} = {self.total_train_loss[key]:.4f}." | |
| ) | |
| self._write_to_tensorboard(self.total_train_loss) | |
| # reset | |
| self.total_train_loss = defaultdict(float) | |
| def _check_train_finish(self): | |
| if self.steps >= self.config["train_max_steps"]: | |
| self.finish_train = True | |
| class Collater(object): | |
| """Customized collater for Pytorch DataLoader in training.""" | |
| def __init__( | |
| self, | |
| batch_max_steps=20480, | |
| hop_size=256, | |
| aux_context_window=2, | |
| use_noise_input=False, | |
| ): | |
| """Initialize customized collater for PyTorch DataLoader. | |
| Args: | |
| batch_max_steps (int): The maximum length of input signal in batch. | |
| hop_size (int): Hop size of auxiliary features. | |
| aux_context_window (int): Context window size for auxiliary feature conv. | |
| use_noise_input (bool): Whether to use noise input. | |
| """ | |
| if batch_max_steps % hop_size != 0: | |
| batch_max_steps += -(batch_max_steps % hop_size) | |
| assert batch_max_steps % hop_size == 0 | |
| self.batch_max_steps = batch_max_steps | |
| self.batch_max_frames = batch_max_steps // hop_size | |
| self.hop_size = hop_size | |
| self.aux_context_window = aux_context_window | |
| self.use_noise_input = use_noise_input | |
| # set useful values in random cutting | |
| self.start_offset = aux_context_window | |
| self.end_offset = -(self.batch_max_frames + aux_context_window) | |
| self.mel_threshold = self.batch_max_frames + 2 * aux_context_window | |
| def __call__(self, batch): | |
| """Convert into batch tensors. | |
| Args: | |
| batch (list): list of tuple of the pair of audio and features. | |
| Returns: | |
| Tensor: Gaussian noise batch (B, 1, T). | |
| Tensor: Auxiliary feature batch (B, C, T'), where | |
| T = (T' - 2 * aux_context_window) * hop_size. | |
| Tensor: Target signal batch (B, 1, T). | |
| """ | |
| # check length | |
| batch = [ | |
| self._adjust_length(*b) for b in batch if len(b[1]) > self.mel_threshold | |
| ] | |
| xs, cs = [b[0] for b in batch], [b[1] for b in batch] | |
| # make batch with random cut | |
| c_lengths = [len(c) for c in cs] | |
| start_frames = np.array( | |
| [ | |
| np.random.randint(self.start_offset, cl + self.end_offset) | |
| for cl in c_lengths | |
| ] | |
| ) | |
| x_starts = start_frames * self.hop_size | |
| x_ends = x_starts + self.batch_max_steps | |
| c_starts = start_frames - self.aux_context_window | |
| c_ends = start_frames + self.batch_max_frames + self.aux_context_window | |
| y_batch = [x[start:end] for x, start, end in zip(xs, x_starts, x_ends)] | |
| c_batch = [c[start:end] for c, start, end in zip(cs, c_starts, c_ends)] | |
| # convert each batch to tensor, asuume that each item in batch has the same length | |
| y_batch = torch.tensor(y_batch, dtype=torch.float).unsqueeze(1) # (B, 1, T) | |
| c_batch = torch.tensor(c_batch, dtype=torch.float).transpose(2, 1) # (B, C, T') | |
| # make input noise signal batch tensor | |
| if self.use_noise_input: | |
| z_batch = torch.randn(y_batch.size()) # (B, 1, T) | |
| return (z_batch, c_batch), y_batch | |
| else: | |
| return (c_batch,), y_batch | |
| def _adjust_length(self, x, c): | |
| """Adjust the audio and feature lengths. | |
| Note: | |
| Basically we assume that the length of x and c are adjusted | |
| through preprocessing stage, but if we use other library processed | |
| features, this process will be needed. | |
| """ | |
| if len(x) < len(c) * self.hop_size: | |
| x = np.pad(x, (0, len(c) * self.hop_size - len(x)), mode="edge") | |
| # check the legnth is valid | |
| assert len(x) == len(c) * self.hop_size | |
| return x, c | |
| def main(): | |
| """Run training process.""" | |
| parser = argparse.ArgumentParser( | |
| description="Train Parallel WaveGAN (See detail in parallel_wavegan/bin/train.py)." | |
| ) | |
| parser.add_argument( | |
| "--train-wav-scp", | |
| default=None, | |
| type=str, | |
| help="kaldi-style wav.scp file for training. " | |
| "you need to specify either train-*-scp or train-dumpdir.", | |
| ) | |
| parser.add_argument( | |
| "--train-feats-scp", | |
| default=None, | |
| type=str, | |
| help="kaldi-style feats.scp file for training. " | |
| "you need to specify either train-*-scp or train-dumpdir.", | |
| ) | |
| parser.add_argument( | |
| "--train-segments", | |
| default=None, | |
| type=str, | |
| help="kaldi-style segments file for training.", | |
| ) | |
| parser.add_argument( | |
| "--train-dumpdir", | |
| default=None, | |
| type=str, | |
| help="directory including training data. " | |
| "you need to specify either train-*-scp or train-dumpdir.", | |
| ) | |
| parser.add_argument( | |
| "--dev-wav-scp", | |
| default=None, | |
| type=str, | |
| help="kaldi-style wav.scp file for validation. " | |
| "you need to specify either dev-*-scp or dev-dumpdir.", | |
| ) | |
| parser.add_argument( | |
| "--dev-feats-scp", | |
| default=None, | |
| type=str, | |
| help="kaldi-style feats.scp file for vaidation. " | |
| "you need to specify either dev-*-scp or dev-dumpdir.", | |
| ) | |
| parser.add_argument( | |
| "--dev-segments", | |
| default=None, | |
| type=str, | |
| help="kaldi-style segments file for validation.", | |
| ) | |
| parser.add_argument( | |
| "--dev-dumpdir", | |
| default=None, | |
| type=str, | |
| help="directory including development data. " | |
| "you need to specify either dev-*-scp or dev-dumpdir.", | |
| ) | |
| parser.add_argument( | |
| "--outdir", | |
| type=str, | |
| required=True, | |
| help="directory to save checkpoints.", | |
| ) | |
| parser.add_argument( | |
| "--config", | |
| type=str, | |
| required=True, | |
| help="yaml format configuration file.", | |
| ) | |
| parser.add_argument( | |
| "--pretrain", | |
| default="", | |
| type=str, | |
| nargs="?", | |
| help='checkpoint file path to load pretrained params. (default="")', | |
| ) | |
| parser.add_argument( | |
| "--resume", | |
| default="", | |
| type=str, | |
| nargs="?", | |
| help='checkpoint file path to resume training. (default="")', | |
| ) | |
| parser.add_argument( | |
| "--verbose", | |
| type=int, | |
| default=1, | |
| help="logging level. higher is more logging. (default=1)", | |
| ) | |
| parser.add_argument( | |
| "--rank", | |
| "--local_rank", | |
| default=0, | |
| type=int, | |
| help="rank for distributed training. no need to explictly specify.", | |
| ) | |
| args = parser.parse_args() | |
| args.distributed = False | |
| if not torch.cuda.is_available(): | |
| device = torch.device("cpu") | |
| else: | |
| device = torch.device("cuda") | |
| # effective when using fixed size inputs | |
| # see https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936 | |
| torch.backends.cudnn.benchmark = True | |
| torch.cuda.set_device(args.rank) | |
| # setup for distributed training | |
| # see example: https://github.com/NVIDIA/apex/tree/master/examples/simple/distributed | |
| if "WORLD_SIZE" in os.environ: | |
| args.world_size = int(os.environ["WORLD_SIZE"]) | |
| args.distributed = args.world_size > 1 | |
| if args.distributed: | |
| torch.distributed.init_process_group(backend="nccl", init_method="env://") | |
| # suppress logging for distributed training | |
| if args.rank != 0: | |
| sys.stdout = open(os.devnull, "w") | |
| # set logger | |
| if args.verbose > 1: | |
| logging.basicConfig( | |
| level=logging.DEBUG, | |
| stream=sys.stdout, | |
| format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
| ) | |
| elif args.verbose > 0: | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| stream=sys.stdout, | |
| format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
| ) | |
| else: | |
| logging.basicConfig( | |
| level=logging.WARN, | |
| stream=sys.stdout, | |
| format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
| ) | |
| logging.warning("Skip DEBUG/INFO messages") | |
| # check directory existence | |
| if not os.path.exists(args.outdir): | |
| os.makedirs(args.outdir) | |
| # check arguments | |
| if (args.train_feats_scp is not None and args.train_dumpdir is not None) or ( | |
| args.train_feats_scp is None and args.train_dumpdir is None | |
| ): | |
| raise ValueError("Please specify either --train-dumpdir or --train-*-scp.") | |
| if (args.dev_feats_scp is not None and args.dev_dumpdir is not None) or ( | |
| args.dev_feats_scp is None and args.dev_dumpdir is None | |
| ): | |
| raise ValueError("Please specify either --dev-dumpdir or --dev-*-scp.") | |
| # load and save config | |
| with open(args.config) as f: | |
| config = yaml.load(f, Loader=yaml.Loader) | |
| config.update(vars(args)) | |
| config["version"] = parallel_wavegan.__version__ # add version info | |
| with open(os.path.join(args.outdir, "config.yml"), "w") as f: | |
| yaml.dump(config, f, Dumper=yaml.Dumper) | |
| for key, value in config.items(): | |
| logging.info(f"{key} = {value}") | |
| # get dataset | |
| if config["remove_short_samples"]: | |
| mel_length_threshold = config["batch_max_steps"] // config[ | |
| "hop_size" | |
| ] + 2 * config["generator_params"].get("aux_context_window", 0) | |
| else: | |
| mel_length_threshold = None | |
| if args.train_wav_scp is None or args.dev_wav_scp is None: | |
| if config["format"] == "hdf5": | |
| audio_query, mel_query = "*.h5", "*.h5" | |
| audio_load_fn = lambda x: read_hdf5(x, "wave") # NOQA | |
| mel_load_fn = lambda x: read_hdf5(x, "feats") # NOQA | |
| elif config["format"] == "npy": | |
| audio_query, mel_query = "*-wave.npy", "*-feats.npy" | |
| audio_load_fn = np.load | |
| mel_load_fn = np.load | |
| else: | |
| raise ValueError("support only hdf5 or npy format.") | |
| if args.train_dumpdir is not None: | |
| train_dataset = AudioMelDataset( | |
| root_dir=args.train_dumpdir, | |
| audio_query=audio_query, | |
| mel_query=mel_query, | |
| audio_load_fn=audio_load_fn, | |
| mel_load_fn=mel_load_fn, | |
| mel_length_threshold=mel_length_threshold, | |
| allow_cache=config.get("allow_cache", False), # keep compatibility | |
| ) | |
| else: | |
| train_dataset = AudioMelSCPDataset( | |
| wav_scp=args.train_wav_scp, | |
| feats_scp=args.train_feats_scp, | |
| segments=args.train_segments, | |
| mel_length_threshold=mel_length_threshold, | |
| allow_cache=config.get("allow_cache", False), # keep compatibility | |
| ) | |
| logging.info(f"The number of training files = {len(train_dataset)}.") | |
| if args.dev_dumpdir is not None: | |
| dev_dataset = AudioMelDataset( | |
| root_dir=args.dev_dumpdir, | |
| audio_query=audio_query, | |
| mel_query=mel_query, | |
| audio_load_fn=audio_load_fn, | |
| mel_load_fn=mel_load_fn, | |
| mel_length_threshold=mel_length_threshold, | |
| allow_cache=config.get("allow_cache", False), # keep compatibility | |
| ) | |
| else: | |
| dev_dataset = AudioMelSCPDataset( | |
| wav_scp=args.dev_wav_scp, | |
| feats_scp=args.dev_feats_scp, | |
| segments=args.dev_segments, | |
| mel_length_threshold=mel_length_threshold, | |
| allow_cache=config.get("allow_cache", False), # keep compatibility | |
| ) | |
| logging.info(f"The number of development files = {len(dev_dataset)}.") | |
| dataset = { | |
| "train": train_dataset, | |
| "dev": dev_dataset, | |
| } | |
| # get data loader | |
| collater = Collater( | |
| batch_max_steps=config["batch_max_steps"], | |
| hop_size=config["hop_size"], | |
| # keep compatibility | |
| aux_context_window=config["generator_params"].get("aux_context_window", 0), | |
| # keep compatibility | |
| use_noise_input=config.get("generator_type", "ParallelWaveGANGenerator") | |
| in ["ParallelWaveGANGenerator"], | |
| ) | |
| sampler = {"train": None, "dev": None} | |
| if args.distributed: | |
| # setup sampler for distributed training | |
| from torch.utils.data.distributed import DistributedSampler | |
| sampler["train"] = DistributedSampler( | |
| dataset=dataset["train"], | |
| num_replicas=args.world_size, | |
| rank=args.rank, | |
| shuffle=True, | |
| ) | |
| sampler["dev"] = DistributedSampler( | |
| dataset=dataset["dev"], | |
| num_replicas=args.world_size, | |
| rank=args.rank, | |
| shuffle=False, | |
| ) | |
| data_loader = { | |
| "train": DataLoader( | |
| dataset=dataset["train"], | |
| shuffle=False if args.distributed else True, | |
| collate_fn=collater, | |
| batch_size=config["batch_size"], | |
| num_workers=config["num_workers"], | |
| sampler=sampler["train"], | |
| pin_memory=config["pin_memory"], | |
| ), | |
| "dev": DataLoader( | |
| dataset=dataset["dev"], | |
| shuffle=False if args.distributed else True, | |
| collate_fn=collater, | |
| batch_size=config["batch_size"], | |
| num_workers=config["num_workers"], | |
| sampler=sampler["dev"], | |
| pin_memory=config["pin_memory"], | |
| ), | |
| } | |
| # define models | |
| generator_class = getattr( | |
| parallel_wavegan.models, | |
| # keep compatibility | |
| config.get("generator_type", "ParallelWaveGANGenerator"), | |
| ) | |
| discriminator_class = getattr( | |
| parallel_wavegan.models, | |
| # keep compatibility | |
| config.get("discriminator_type", "ParallelWaveGANDiscriminator"), | |
| ) | |
| model = { | |
| "generator": generator_class( | |
| **config["generator_params"], | |
| ).to(device), | |
| "discriminator": discriminator_class( | |
| **config["discriminator_params"], | |
| ).to(device), | |
| } | |
| # define criterions | |
| criterion = { | |
| "gen_adv": GeneratorAdversarialLoss( | |
| # keep compatibility | |
| **config.get("generator_adv_loss_params", {}) | |
| ).to(device), | |
| "dis_adv": DiscriminatorAdversarialLoss( | |
| # keep compatibility | |
| **config.get("discriminator_adv_loss_params", {}) | |
| ).to(device), | |
| } | |
| if config.get("use_stft_loss", True): # keep compatibility | |
| config["use_stft_loss"] = True | |
| criterion["stft"] = MultiResolutionSTFTLoss( | |
| **config["stft_loss_params"], | |
| ).to(device) | |
| if config.get("use_subband_stft_loss", False): # keep compatibility | |
| assert config["generator_params"]["out_channels"] > 1 | |
| criterion["sub_stft"] = MultiResolutionSTFTLoss( | |
| **config["subband_stft_loss_params"], | |
| ).to(device) | |
| else: | |
| config["use_subband_stft_loss"] = False | |
| if config.get("use_feat_match_loss", False): # keep compatibility | |
| criterion["feat_match"] = FeatureMatchLoss( | |
| # keep compatibility | |
| **config.get("feat_match_loss_params", {}), | |
| ).to(device) | |
| else: | |
| config["use_feat_match_loss"] = False | |
| if config.get("use_mel_loss", False): # keep compatibility | |
| if config.get("mel_loss_params", None) is None: | |
| criterion["mel"] = MelSpectrogramLoss( | |
| fs=config["sampling_rate"], | |
| fft_size=config["fft_size"], | |
| hop_size=config["hop_size"], | |
| win_length=config["win_length"], | |
| window=config["window"], | |
| num_mels=config["num_mels"], | |
| fmin=config["fmin"], | |
| fmax=config["fmax"], | |
| ).to(device) | |
| else: | |
| criterion["mel"] = MelSpectrogramLoss( | |
| **config["mel_loss_params"], | |
| ).to(device) | |
| else: | |
| config["use_mel_loss"] = False | |
| # define special module for subband processing | |
| if config["generator_params"]["out_channels"] > 1: | |
| criterion["pqmf"] = PQMF( | |
| subbands=config["generator_params"]["out_channels"], | |
| # keep compatibility | |
| **config.get("pqmf_params", {}), | |
| ).to(device) | |
| # define optimizers and schedulers | |
| generator_optimizer_class = getattr( | |
| parallel_wavegan.optimizers, | |
| # keep compatibility | |
| config.get("generator_optimizer_type", "RAdam"), | |
| ) | |
| discriminator_optimizer_class = getattr( | |
| parallel_wavegan.optimizers, | |
| # keep compatibility | |
| config.get("discriminator_optimizer_type", "RAdam"), | |
| ) | |
| optimizer = { | |
| "generator": generator_optimizer_class( | |
| model["generator"].parameters(), | |
| **config["generator_optimizer_params"], | |
| ), | |
| "discriminator": discriminator_optimizer_class( | |
| model["discriminator"].parameters(), | |
| **config["discriminator_optimizer_params"], | |
| ), | |
| } | |
| generator_scheduler_class = getattr( | |
| torch.optim.lr_scheduler, | |
| # keep compatibility | |
| config.get("generator_scheduler_type", "StepLR"), | |
| ) | |
| discriminator_scheduler_class = getattr( | |
| torch.optim.lr_scheduler, | |
| # keep compatibility | |
| config.get("discriminator_scheduler_type", "StepLR"), | |
| ) | |
| scheduler = { | |
| "generator": generator_scheduler_class( | |
| optimizer=optimizer["generator"], | |
| **config["generator_scheduler_params"], | |
| ), | |
| "discriminator": discriminator_scheduler_class( | |
| optimizer=optimizer["discriminator"], | |
| **config["discriminator_scheduler_params"], | |
| ), | |
| } | |
| if args.distributed: | |
| # wrap model for distributed training | |
| try: | |
| from apex.parallel import DistributedDataParallel | |
| except ImportError: | |
| raise ImportError( | |
| "apex is not installed. please check https://github.com/NVIDIA/apex." | |
| ) | |
| model["generator"] = DistributedDataParallel(model["generator"]) | |
| model["discriminator"] = DistributedDataParallel(model["discriminator"]) | |
| # show settings | |
| logging.info(model["generator"]) | |
| logging.info(model["discriminator"]) | |
| logging.info(optimizer["generator"]) | |
| logging.info(optimizer["discriminator"]) | |
| logging.info(scheduler["generator"]) | |
| logging.info(scheduler["discriminator"]) | |
| for criterion_ in criterion.values(): | |
| logging.info(criterion_) | |
| # define trainer | |
| trainer = Trainer( | |
| steps=0, | |
| epochs=0, | |
| data_loader=data_loader, | |
| sampler=sampler, | |
| model=model, | |
| criterion=criterion, | |
| optimizer=optimizer, | |
| scheduler=scheduler, | |
| config=config, | |
| device=device, | |
| ) | |
| # load pretrained parameters from checkpoint | |
| if len(args.pretrain) != 0: | |
| trainer.load_checkpoint(args.pretrain, load_only_params=True) | |
| logging.info(f"Successfully load parameters from {args.pretrain}.") | |
| # resume from checkpoint | |
| if len(args.resume) != 0: | |
| trainer.load_checkpoint(args.resume) | |
| logging.info(f"Successfully resumed from {args.resume}.") | |
| # run training loop | |
| try: | |
| trainer.run() | |
| finally: | |
| trainer.save_checkpoint( | |
| os.path.join(config["outdir"], f"checkpoint-{trainer.steps}steps.pkl") | |
| ) | |
| logging.info(f"Successfully saved checkpoint @ {trainer.steps}steps.") | |
| if __name__ == "__main__": | |
| main() | |